论德西特 2 空间中与正射影线相关的电磁曲线和几何相位

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Bahar Doğan Yazıcı, Sıddıka Özkaldı Karakuş
{"title":"论德西特 2 空间中与正射影线相关的电磁曲线和几何相位","authors":"Bahar Doğan Yazıcı,&nbsp;Sıddıka Özkaldı Karakuş","doi":"10.1007/s12648-023-02876-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we introduce a Berry phase model which is very important in physics relative to the frontals in de-Sitter 2-space. With this approach, we examine the relationship between a singular curve and Fermi–Walker’s law and Berry’s phase law in de-Sitter 2-space. We give the Rytov curves by using an orthonormal frame of spacelike frontals and timelike frontals with Fermi–Walker parallelism. We express parametric representations of Rytov curves associated with a singular optical fiber. We examine electromagnetic curves associated with orthonormal vectors of spacelike frontals and timelike frontals in de-Sitter 2-space. Hence, we express the magnetic field equations, Lorentz force equations and magnetic trajectory equations along a singular optical fiber. Finally, we give examples that support the theories both physically and geometrically.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"98 3","pages":"1021 - 1030"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On electromagnetic curves and geometric phase associated with frontals in de-Sitter 2-space\",\"authors\":\"Bahar Doğan Yazıcı,&nbsp;Sıddıka Özkaldı Karakuş\",\"doi\":\"10.1007/s12648-023-02876-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we introduce a Berry phase model which is very important in physics relative to the frontals in de-Sitter 2-space. With this approach, we examine the relationship between a singular curve and Fermi–Walker’s law and Berry’s phase law in de-Sitter 2-space. We give the Rytov curves by using an orthonormal frame of spacelike frontals and timelike frontals with Fermi–Walker parallelism. We express parametric representations of Rytov curves associated with a singular optical fiber. We examine electromagnetic curves associated with orthonormal vectors of spacelike frontals and timelike frontals in de-Sitter 2-space. Hence, we express the magnetic field equations, Lorentz force equations and magnetic trajectory equations along a singular optical fiber. Finally, we give examples that support the theories both physically and geometrically.</p></div>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"98 3\",\"pages\":\"1021 - 1030\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12648-023-02876-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-023-02876-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了贝里相位模型,该模型在物理学中相对于去西特二维空间中的锋面非常重要。通过这种方法,我们研究了奇异曲线与费米-沃克定律和贝里相律在去西特 2 空间中的关系。我们利用具有费米-沃克平行性的空间似正面和时间似正面的正交框架给出了雷托夫曲线。我们表达了与奇异光纤相关的雷托夫曲线的参数表示。我们研究了与去西特 2 空间中的时空前沿和时空前沿的正交矢量相关的电磁曲线。因此,我们沿奇异光纤表达了磁场方程、洛伦兹力方程和磁轨迹方程。最后,我们举例说明了这些理论在物理和几何上的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On electromagnetic curves and geometric phase associated with frontals in de-Sitter 2-space

In this work, we introduce a Berry phase model which is very important in physics relative to the frontals in de-Sitter 2-space. With this approach, we examine the relationship between a singular curve and Fermi–Walker’s law and Berry’s phase law in de-Sitter 2-space. We give the Rytov curves by using an orthonormal frame of spacelike frontals and timelike frontals with Fermi–Walker parallelism. We express parametric representations of Rytov curves associated with a singular optical fiber. We examine electromagnetic curves associated with orthonormal vectors of spacelike frontals and timelike frontals in de-Sitter 2-space. Hence, we express the magnetic field equations, Lorentz force equations and magnetic trajectory equations along a singular optical fiber. Finally, we give examples that support the theories both physically and geometrically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信