基于自相关函数指示器的混沌识别

V. Carruba, S. Aljbaae, R. C. Domingos, M. Huaman, W. Barletta
{"title":"基于自相关函数指示器的混沌识别","authors":"V. Carruba, S. Aljbaae, R. C. Domingos, M. Huaman, W. Barletta","doi":"10.1017/S1743921321001307","DOIUrl":null,"url":null,"abstract":"Abstract Close encounters or resonances overlaps can create chaotic motion in small bodies in the Solar System. Approaches that measure the separation rate of trajectories that start infinitesimally near, or changes in the frequency power spectrum of time series, among others, can discover chaotic motion. In this paper, we introduce the ACF index (ACFI), which is based on the auto-correlation function of time series. Auto-correlation coefficients measure the correlation of a time-series with a lagged duplicate of itself. By counting the number of auto-correlation coefficients that are larger than 5% after a certain amount of time has passed, we can assess how the time series auto-correlates with each other. This allows for the detection of chaotic time-series characterized by low ACFI values.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chaos identification through the auto-correlation function indicator (ACFI)\",\"authors\":\"V. Carruba, S. Aljbaae, R. C. Domingos, M. Huaman, W. Barletta\",\"doi\":\"10.1017/S1743921321001307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Close encounters or resonances overlaps can create chaotic motion in small bodies in the Solar System. Approaches that measure the separation rate of trajectories that start infinitesimally near, or changes in the frequency power spectrum of time series, among others, can discover chaotic motion. In this paper, we introduce the ACF index (ACFI), which is based on the auto-correlation function of time series. Auto-correlation coefficients measure the correlation of a time-series with a lagged duplicate of itself. By counting the number of auto-correlation coefficients that are larger than 5% after a certain amount of time has passed, we can assess how the time series auto-correlates with each other. This allows for the detection of chaotic time-series characterized by low ACFI values.\",\"PeriodicalId\":20590,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921321001307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921321001307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近距离接触或共振重叠会在太阳系的小天体中产生混沌运动。测量在无限小附近开始的轨迹的分离率的方法,或者时间序列的频率功率谱的变化,等等,可以发现混沌运动。本文介绍了基于时间序列自相关函数的ACF指数(ACFI)。自相关系数测量时间序列与自身滞后副本的相关性。通过计算一定时间后大于5%的自相关系数的数量,我们可以评估时间序列如何相互自相关。这允许检测以低ACFI值为特征的混沌时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos identification through the auto-correlation function indicator (ACFI)
Abstract Close encounters or resonances overlaps can create chaotic motion in small bodies in the Solar System. Approaches that measure the separation rate of trajectories that start infinitesimally near, or changes in the frequency power spectrum of time series, among others, can discover chaotic motion. In this paper, we introduce the ACF index (ACFI), which is based on the auto-correlation function of time series. Auto-correlation coefficients measure the correlation of a time-series with a lagged duplicate of itself. By counting the number of auto-correlation coefficients that are larger than 5% after a certain amount of time has passed, we can assess how the time series auto-correlates with each other. This allows for the detection of chaotic time-series characterized by low ACFI values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信