最大次不超过3的图的匹配能量

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
S. K. Ghezelahmad
{"title":"最大次不超过3的图的匹配能量","authors":"S. K. Ghezelahmad","doi":"10.46793/match.89-3.687g","DOIUrl":null,"url":null,"abstract":"The matching energy of a graph G, denoted by ME(G), is def ined as the sum of absolute values of the zeros of the matching polynomial of G. In this paper, we prove that if G is a connected graph of order n with maximum degree at most 3, then ME(G) > n with only six exceptions. In particular, we show that there are only two connected graphs with maximum degree at most three, whose matching energies are equal to the number of vertices.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"251 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matching Energy of Graphs with Maximum Degree at Most 3\",\"authors\":\"S. K. Ghezelahmad\",\"doi\":\"10.46793/match.89-3.687g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matching energy of a graph G, denoted by ME(G), is def ined as the sum of absolute values of the zeros of the matching polynomial of G. In this paper, we prove that if G is a connected graph of order n with maximum degree at most 3, then ME(G) > n with only six exceptions. In particular, we show that there are only two connected graphs with maximum degree at most three, whose matching energies are equal to the number of vertices.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"251 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46793/match.89-3.687g\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.89-3.687g","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

图G的匹配能量用ME(G)表示,定义为G的匹配多项式0的绝对值之和。本文证明了如果G是最大次不超过3的n阶连通图,则ME(G) > n,只有6个例外。特别地,我们证明了只有两个最大度不超过3的连通图,它们的匹配能量等于顶点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching Energy of Graphs with Maximum Degree at Most 3
The matching energy of a graph G, denoted by ME(G), is def ined as the sum of absolute values of the zeros of the matching polynomial of G. In this paper, we prove that if G is a connected graph of order n with maximum degree at most 3, then ME(G) > n with only six exceptions. In particular, we show that there are only two connected graphs with maximum degree at most three, whose matching energies are equal to the number of vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信