{"title":"关于(非)局部相变和极小表面的一些观点","authors":"S. Dipierro, E. Valdinoci","doi":"10.1142/s1664360723300013","DOIUrl":null,"url":null,"abstract":"We present here some classical and modern results about phase transitions and minimal surfaces, which are quite intertwined topics. We start from scratch, revisiting the theory of phase transitions as put forth by Lev Landau. Then, we relate the short-range phase transitions to the classical minimal surfaces, whose basic regularity theory is presented, also in connection with a celebrated conjecture by Ennio De Giorgi. With this, we explore the recently developed subject of long-range phase transitions and relate its genuinely nonlocal regime to the analysis of fractional minimal surfaces.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some perspectives on (non)local phase transitions and minimal surfaces\",\"authors\":\"S. Dipierro, E. Valdinoci\",\"doi\":\"10.1142/s1664360723300013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present here some classical and modern results about phase transitions and minimal surfaces, which are quite intertwined topics. We start from scratch, revisiting the theory of phase transitions as put forth by Lev Landau. Then, we relate the short-range phase transitions to the classical minimal surfaces, whose basic regularity theory is presented, also in connection with a celebrated conjecture by Ennio De Giorgi. With this, we explore the recently developed subject of long-range phase transitions and relate its genuinely nonlocal regime to the analysis of fractional minimal surfaces.\",\"PeriodicalId\":9348,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1664360723300013\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1664360723300013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some perspectives on (non)local phase transitions and minimal surfaces
We present here some classical and modern results about phase transitions and minimal surfaces, which are quite intertwined topics. We start from scratch, revisiting the theory of phase transitions as put forth by Lev Landau. Then, we relate the short-range phase transitions to the classical minimal surfaces, whose basic regularity theory is presented, also in connection with a celebrated conjecture by Ennio De Giorgi. With this, we explore the recently developed subject of long-range phase transitions and relate its genuinely nonlocal regime to the analysis of fractional minimal surfaces.
期刊介绍:
The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited.
The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.