不可约特征的协度的p部分

Pub Date : 2021-03-01 DOI:10.5802/CRMATH.158
Roya Bahramian, N. Ahanjideh
{"title":"不可约特征的协度的p部分","authors":"Roya Bahramian, N. Ahanjideh","doi":"10.5802/CRMATH.158","DOIUrl":null,"url":null,"abstract":"For a character χ of a finite group G , the co-degree of χ is χc (1) = [G :kerχ] χ(1) . Let p be a prime and let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that pe+1 χc (1), for every irreducible character χ of G , then the p-length of G is not greater than e. Next, we study the finite groups satisfying the condition that p2 does not divide the co-degrees of their irreducible characters. Mathematical subject classification (2010). 20C15, 20D10, 20D05. Manuscript received 22nd April 2020, revised and accepted 24th November 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"p-parts of co-degrees of irreducible characters\",\"authors\":\"Roya Bahramian, N. Ahanjideh\",\"doi\":\"10.5802/CRMATH.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a character χ of a finite group G , the co-degree of χ is χc (1) = [G :kerχ] χ(1) . Let p be a prime and let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that pe+1 χc (1), for every irreducible character χ of G , then the p-length of G is not greater than e. Next, we study the finite groups satisfying the condition that p2 does not divide the co-degrees of their irreducible characters. Mathematical subject classification (2010). 20C15, 20D10, 20D05. Manuscript received 22nd April 2020, revised and accepted 24th November 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于有限群G的一个特征χ, χ的共度为χc (1) = [G:kerχ] χ(1)。设p为质数,e为正整数。本文首先证明了如果G是p可解群,使得对于G的每一个不可约字符χ, p +1 χc(1),则G的p长度不大于e。然后研究了满足p2不除其不可约字符的协度的条件的有限群。数学学科分类(2010)。20c15, 20d10, 20d05。稿件于2020年4月22日收稿,于2020年11月24日修订并接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
p-parts of co-degrees of irreducible characters
For a character χ of a finite group G , the co-degree of χ is χc (1) = [G :kerχ] χ(1) . Let p be a prime and let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that pe+1 χc (1), for every irreducible character χ of G , then the p-length of G is not greater than e. Next, we study the finite groups satisfying the condition that p2 does not divide the co-degrees of their irreducible characters. Mathematical subject classification (2010). 20C15, 20D10, 20D05. Manuscript received 22nd April 2020, revised and accepted 24th November 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信