蜂窝晶格上无序量子二聚体模型的多体定位探测

F. Pietracaprina, F. Alet
{"title":"蜂窝晶格上无序量子二聚体模型的多体定位探测","authors":"F. Pietracaprina, F. Alet","doi":"10.21468/SCIPOSTPHYS.10.2.044","DOIUrl":null,"url":null,"abstract":"We numerically study the possibility of many-body localization transition in a disordered quantum dimer model on the honeycomb lattice. By using the peculiar constraints of this model and state-of-the-art exact diagonalization and time evolution methods, we probe both eigenstates and dynamical properties and conclude on the existence of a localization transition, on the available time and length scales (system sizes of up to N=108 sites). We critically discuss these results and their implications.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Probing many-body localization in a disordered quantum dimer model on the honeycomb lattice\",\"authors\":\"F. Pietracaprina, F. Alet\",\"doi\":\"10.21468/SCIPOSTPHYS.10.2.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We numerically study the possibility of many-body localization transition in a disordered quantum dimer model on the honeycomb lattice. By using the peculiar constraints of this model and state-of-the-art exact diagonalization and time evolution methods, we probe both eigenstates and dynamical properties and conclude on the existence of a localization transition, on the available time and length scales (system sizes of up to N=108 sites). We critically discuss these results and their implications.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SCIPOSTPHYS.10.2.044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.2.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文用数值方法研究了蜂窝晶格上无序量子二聚体模型中多体局域化跃迁的可能性。通过使用该模型的特殊约束和最先进的精确对角化和时间演化方法,我们探索了特征态和动力学性质,并得出了在可用的时间和长度尺度上(系统规模高达N=108个站点)存在局域化转变的结论。我们批判性地讨论这些结果及其含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing many-body localization in a disordered quantum dimer model on the honeycomb lattice
We numerically study the possibility of many-body localization transition in a disordered quantum dimer model on the honeycomb lattice. By using the peculiar constraints of this model and state-of-the-art exact diagonalization and time evolution methods, we probe both eigenstates and dynamical properties and conclude on the existence of a localization transition, on the available time and length scales (system sizes of up to N=108 sites). We critically discuss these results and their implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信