{"title":"有效音频事件检索的监督深度哈希","authors":"Arindam Jati, Dimitra Emmanouilidou","doi":"10.1109/ICASSP40776.2020.9053766","DOIUrl":null,"url":null,"abstract":"Efficient retrieval of audio events can facilitate real-time implementation of numerous query and search-based systems. This work investigates the potency of different hashing techniques for efficient audio event retrieval. Multiple state-of-the-art weak audio embeddings are employed for this purpose. The performance of four classical unsupervised hashing algorithms is explored as part of off-the-shelf analysis. Then, we propose a partially supervised deep hashing framework that transforms the weak embeddings into a low-dimensional space while optimizing for efficient hash codes. The model uses only a fraction of the available labels and is shown here to significantly improve the retrieval accuracy on two widely employed audio event datasets. The extensive analysis and comparison between supervised and unsupervised hashing methods presented here, give insights on the quantizability of audio embeddings. This work provides a first look in efficient audio event retrieval systems and hopes to set baselines for future research.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1","pages":"4497-4501"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Supervised Deep Hashing for Efficient Audio Event Retrieval\",\"authors\":\"Arindam Jati, Dimitra Emmanouilidou\",\"doi\":\"10.1109/ICASSP40776.2020.9053766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient retrieval of audio events can facilitate real-time implementation of numerous query and search-based systems. This work investigates the potency of different hashing techniques for efficient audio event retrieval. Multiple state-of-the-art weak audio embeddings are employed for this purpose. The performance of four classical unsupervised hashing algorithms is explored as part of off-the-shelf analysis. Then, we propose a partially supervised deep hashing framework that transforms the weak embeddings into a low-dimensional space while optimizing for efficient hash codes. The model uses only a fraction of the available labels and is shown here to significantly improve the retrieval accuracy on two widely employed audio event datasets. The extensive analysis and comparison between supervised and unsupervised hashing methods presented here, give insights on the quantizability of audio embeddings. This work provides a first look in efficient audio event retrieval systems and hopes to set baselines for future research.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"8 1\",\"pages\":\"4497-4501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supervised Deep Hashing for Efficient Audio Event Retrieval
Efficient retrieval of audio events can facilitate real-time implementation of numerous query and search-based systems. This work investigates the potency of different hashing techniques for efficient audio event retrieval. Multiple state-of-the-art weak audio embeddings are employed for this purpose. The performance of four classical unsupervised hashing algorithms is explored as part of off-the-shelf analysis. Then, we propose a partially supervised deep hashing framework that transforms the weak embeddings into a low-dimensional space while optimizing for efficient hash codes. The model uses only a fraction of the available labels and is shown here to significantly improve the retrieval accuracy on two widely employed audio event datasets. The extensive analysis and comparison between supervised and unsupervised hashing methods presented here, give insights on the quantizability of audio embeddings. This work provides a first look in efficient audio event retrieval systems and hopes to set baselines for future research.