油棕种植园生产力预测模型的输入变量选择

A. P. Suryotomo, A. Harjoko
{"title":"油棕种植园生产力预测模型的输入变量选择","authors":"A. P. Suryotomo, A. Harjoko","doi":"10.31315/telematika.v20i1.9674","DOIUrl":null,"url":null,"abstract":"Purpose: This study aims to implement and improve a wrapper-type Input Variable Selection (IVS) to the prediction model of oil palm production utilizing oil palm expert knowledge criteria and distance-based data sensitivity criteria in order to measure cost-saving in laboratory leaf and soil sample testing.Methodology: The proposed approach consists of IVS process, searching the best prediction model based on the selected variables, and analyzing the cost-saving in laboratory leaf and soil sample testing.Findings/result: The proposed method managed to effectively choose 7 from 19 variables and achieve 81.47% saving from total laboratory sample testing cost.Value: This result has the potential to help small stakeholder oil palm planter to reduce the cost of laboratory testing without losing important information from their plantation.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input Variable Selection for Oil Palm Plantation Productivity Prediction Model\",\"authors\":\"A. P. Suryotomo, A. Harjoko\",\"doi\":\"10.31315/telematika.v20i1.9674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: This study aims to implement and improve a wrapper-type Input Variable Selection (IVS) to the prediction model of oil palm production utilizing oil palm expert knowledge criteria and distance-based data sensitivity criteria in order to measure cost-saving in laboratory leaf and soil sample testing.Methodology: The proposed approach consists of IVS process, searching the best prediction model based on the selected variables, and analyzing the cost-saving in laboratory leaf and soil sample testing.Findings/result: The proposed method managed to effectively choose 7 from 19 variables and achieve 81.47% saving from total laboratory sample testing cost.Value: This result has the potential to help small stakeholder oil palm planter to reduce the cost of laboratory testing without losing important information from their plantation.\",\"PeriodicalId\":31716,\"journal\":{\"name\":\"Telematika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31315/telematika.v20i1.9674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/telematika.v20i1.9674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在利用油棕专家知识标准和基于距离的数据敏感性标准,实现并改进油棕产量预测模型的包装型输入变量选择(IVS),以衡量实验室叶片和土壤样品检测的成本节约。方法:该方法包括IVS过程,根据所选变量搜索最佳预测模型,并分析实验室叶片和土壤样品检测的成本节约。发现/结果:该方法从19个变量中有效选择了7个变量,节约实验室样品检测总成本81.47%。价值:这一结果有可能帮助小利益相关者油棕种植者减少实验室测试的成本,而不会丢失他们种植园的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Input Variable Selection for Oil Palm Plantation Productivity Prediction Model
Purpose: This study aims to implement and improve a wrapper-type Input Variable Selection (IVS) to the prediction model of oil palm production utilizing oil palm expert knowledge criteria and distance-based data sensitivity criteria in order to measure cost-saving in laboratory leaf and soil sample testing.Methodology: The proposed approach consists of IVS process, searching the best prediction model based on the selected variables, and analyzing the cost-saving in laboratory leaf and soil sample testing.Findings/result: The proposed method managed to effectively choose 7 from 19 variables and achieve 81.47% saving from total laboratory sample testing cost.Value: This result has the potential to help small stakeholder oil palm planter to reduce the cost of laboratory testing without losing important information from their plantation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信