K. Avramov, B. Uspenskyi, I. Urniaieva, Ivan D. Breslavskyi
{"title":"中等振幅三层复合材料壳非线性振动的分岔与稳定性","authors":"K. Avramov, B. Uspenskyi, I. Urniaieva, Ivan D. Breslavskyi","doi":"10.15407/pmach2023.02.006","DOIUrl":null,"url":null,"abstract":"The authors derived a mathematical model of geometrically nonlinear vibrations of three-layer shells, which describes the vibrations of the structure with amplitudes comparable to its thickness. The high-order shear theory is used in the derivation of this model. Rotational inertia is also taken into account. At the same time, the middle layer is a honeycomb structure made thanks to additive FDM technologies. In addition, each shell layer is described by five variables (three displacement projections and two rotation angles of the normal to the middle surface). The total number of unknown variables is fifteen. To obtain a model of nonlinear vibrations of the structure, the method of given forms is used. The potential energy, which takes into account the quadratic, cubic, and fourth powers of the generalized displacements of the structure, is derived. All generalized displacements are decomposed by generalized coordinates and eigenforms, which are recognized as basic functions. It is proved that the mathematical model of shell vibrations is a system of nonlinear non-autonomous ordinary differential equations. A numerical procedure is used to study nonlinear periodic vibrations and their bifurcations, which is a combination of the continuation method and the shooting method. The shooting method takes into account periodicity conditions expressed by a system of nonlinear algebraic equations with respect to the initial conditions of periodic vibrations. These equations are solved using Newton's method. The properties of nonlinear periodic vibrations and their bifurcations in the area of subharmonic resonances are numerically studied. Stable subharmonic vibrations of the second order, which undergo a saddle-node bifurcation, are revealed. An infinite sequence of bifurcations leading to chaotic vibrations is not detected.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"21 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcations and Stability of Nonlinear Vibrations of a Three-Layer Composite Shell with Moderate Amplitudes\",\"authors\":\"K. Avramov, B. Uspenskyi, I. Urniaieva, Ivan D. Breslavskyi\",\"doi\":\"10.15407/pmach2023.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors derived a mathematical model of geometrically nonlinear vibrations of three-layer shells, which describes the vibrations of the structure with amplitudes comparable to its thickness. The high-order shear theory is used in the derivation of this model. Rotational inertia is also taken into account. At the same time, the middle layer is a honeycomb structure made thanks to additive FDM technologies. In addition, each shell layer is described by five variables (three displacement projections and two rotation angles of the normal to the middle surface). The total number of unknown variables is fifteen. To obtain a model of nonlinear vibrations of the structure, the method of given forms is used. The potential energy, which takes into account the quadratic, cubic, and fourth powers of the generalized displacements of the structure, is derived. All generalized displacements are decomposed by generalized coordinates and eigenforms, which are recognized as basic functions. It is proved that the mathematical model of shell vibrations is a system of nonlinear non-autonomous ordinary differential equations. A numerical procedure is used to study nonlinear periodic vibrations and their bifurcations, which is a combination of the continuation method and the shooting method. The shooting method takes into account periodicity conditions expressed by a system of nonlinear algebraic equations with respect to the initial conditions of periodic vibrations. These equations are solved using Newton's method. The properties of nonlinear periodic vibrations and their bifurcations in the area of subharmonic resonances are numerically studied. Stable subharmonic vibrations of the second order, which undergo a saddle-node bifurcation, are revealed. An infinite sequence of bifurcations leading to chaotic vibrations is not detected.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pmach2023.02.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.02.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Bifurcations and Stability of Nonlinear Vibrations of a Three-Layer Composite Shell with Moderate Amplitudes
The authors derived a mathematical model of geometrically nonlinear vibrations of three-layer shells, which describes the vibrations of the structure with amplitudes comparable to its thickness. The high-order shear theory is used in the derivation of this model. Rotational inertia is also taken into account. At the same time, the middle layer is a honeycomb structure made thanks to additive FDM technologies. In addition, each shell layer is described by five variables (three displacement projections and two rotation angles of the normal to the middle surface). The total number of unknown variables is fifteen. To obtain a model of nonlinear vibrations of the structure, the method of given forms is used. The potential energy, which takes into account the quadratic, cubic, and fourth powers of the generalized displacements of the structure, is derived. All generalized displacements are decomposed by generalized coordinates and eigenforms, which are recognized as basic functions. It is proved that the mathematical model of shell vibrations is a system of nonlinear non-autonomous ordinary differential equations. A numerical procedure is used to study nonlinear periodic vibrations and their bifurcations, which is a combination of the continuation method and the shooting method. The shooting method takes into account periodicity conditions expressed by a system of nonlinear algebraic equations with respect to the initial conditions of periodic vibrations. These equations are solved using Newton's method. The properties of nonlinear periodic vibrations and their bifurcations in the area of subharmonic resonances are numerically studied. Stable subharmonic vibrations of the second order, which undergo a saddle-node bifurcation, are revealed. An infinite sequence of bifurcations leading to chaotic vibrations is not detected.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.