现代法国诗歌的生成与RoBERTa和GPT-2

Intech Pub Date : 2022-12-06 DOI:10.48550/arXiv.2212.02911
Mika Hämäläinen, Khalid Alnajjar, T. Poibeau
{"title":"现代法国诗歌的生成与RoBERTa和GPT-2","authors":"Mika Hämäläinen, Khalid Alnajjar, T. Poibeau","doi":"10.48550/arXiv.2212.02911","DOIUrl":null,"url":null,"abstract":"We present a novel neural model for modern poetry gen- eration in French. The model consists of two pretrained neural models that are fine-tuned for the poem gener- ation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can cre- ate French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typ- icality and emotionality of the output poetry while the best score of 3.79 was given to understandability .","PeriodicalId":13714,"journal":{"name":"Intech","volume":"7 1","pages":"12-16"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modern French Poetry Generation with RoBERTa and GPT-2\",\"authors\":\"Mika Hämäläinen, Khalid Alnajjar, T. Poibeau\",\"doi\":\"10.48550/arXiv.2212.02911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel neural model for modern poetry gen- eration in French. The model consists of two pretrained neural models that are fine-tuned for the poem gener- ation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can cre- ate French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typ- icality and emotionality of the output poetry while the best score of 3.79 was given to understandability .\",\"PeriodicalId\":13714,\"journal\":{\"name\":\"Intech\",\"volume\":\"7 1\",\"pages\":\"12-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.02911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.02911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的法语现代诗歌生成神经模型。该模型由两个预先训练的神经模型组成,这些神经模型对诗歌生成任务进行了微调。该模型的编码器是基于RoBERTa的,解码器是基于GPT-2的。这样模型可以受益于RoBERTa优越的自然语言理解性能和GPT-2良好的自然语言生成性能。我们的评价表明,这种模式能够成功地创作出法国诗歌。在5分制中,人类评委对输出诗歌的典型性和情绪性给出了最低的3.57分,对可理解性给出了最高的3.79分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modern French Poetry Generation with RoBERTa and GPT-2
We present a novel neural model for modern poetry gen- eration in French. The model consists of two pretrained neural models that are fine-tuned for the poem gener- ation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can cre- ate French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typ- icality and emotionality of the output poetry while the best score of 3.79 was given to understandability .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信