基于小数据量的多帧图像超分辨率算法

Yuhang Jiang, Yuwei Lu, Lili Dong, Wenhai Xu
{"title":"基于小数据量的多帧图像超分辨率算法","authors":"Yuhang Jiang, Yuwei Lu, Lili Dong, Wenhai Xu","doi":"10.1109/ICIVC50857.2020.9177476","DOIUrl":null,"url":null,"abstract":"In this paper, a novel multi-frame image super-resolution algorithm for small amount of data is proposed. Our method solve the problem that the spatial resolution of the reconstructed image is low and the visual quality of it is poor when the number of input low-resolution images is small. In order to improve the quality of the initial estimation, we construct the initial estimation with multi-frame low-resolution images according to the registration parameter and interpolate the missing pixels by directional Gaussian-like filtering. In order to solve the problem of fuzzy initial estimation, the enhancement method is used to highlight the image details. A large number of qualitative and quantitative evaluation results show that our method has strong reconstruction performance for various types of low-resolution images under different amount of data.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"67 1","pages":"118-122"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-frame Image Super-Resolution Algorithm Based on Small Amount of Data\",\"authors\":\"Yuhang Jiang, Yuwei Lu, Lili Dong, Wenhai Xu\",\"doi\":\"10.1109/ICIVC50857.2020.9177476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel multi-frame image super-resolution algorithm for small amount of data is proposed. Our method solve the problem that the spatial resolution of the reconstructed image is low and the visual quality of it is poor when the number of input low-resolution images is small. In order to improve the quality of the initial estimation, we construct the initial estimation with multi-frame low-resolution images according to the registration parameter and interpolate the missing pixels by directional Gaussian-like filtering. In order to solve the problem of fuzzy initial estimation, the enhancement method is used to highlight the image details. A large number of qualitative and quantitative evaluation results show that our method has strong reconstruction performance for various types of low-resolution images under different amount of data.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"67 1\",\"pages\":\"118-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种针对小数据量的多帧图像超分辨率算法。该方法解决了输入低分辨率图像数量少时重构图像空间分辨率低、视觉质量差的问题。为了提高初始估计的质量,我们根据配准参数构建了多帧低分辨率图像的初始估计,并用类高斯滤波对缺失像素进行插值。为了解决模糊初始估计问题,采用增强方法突出图像细节。大量定性和定量评价结果表明,该方法对不同数据量下的各类低分辨率图像具有较强的重构性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-frame Image Super-Resolution Algorithm Based on Small Amount of Data
In this paper, a novel multi-frame image super-resolution algorithm for small amount of data is proposed. Our method solve the problem that the spatial resolution of the reconstructed image is low and the visual quality of it is poor when the number of input low-resolution images is small. In order to improve the quality of the initial estimation, we construct the initial estimation with multi-frame low-resolution images according to the registration parameter and interpolate the missing pixels by directional Gaussian-like filtering. In order to solve the problem of fuzzy initial estimation, the enhancement method is used to highlight the image details. A large number of qualitative and quantitative evaluation results show that our method has strong reconstruction performance for various types of low-resolution images under different amount of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信