{"title":"周期性激励耦合振荡器的慢-快动力学","authors":"Yibo Xia, Jingwei He, Jürgen Kurths, Qinsheng Bi","doi":"10.1142/s0218127423500931","DOIUrl":null,"url":null,"abstract":"We study the influence of the coexisting steady states in high-dimensional systems on the dynamical evolution of the vector field when a slow-varying periodic excitation is introduced. The model under consideration is a coupled system of Bonhöffer–van der Pol (BVP) equations with a slow-varying periodic excitation. We apply the modified slow–fast analysis method to perform a detailed study on all the equilibrium branches and their bifurcations of the generalized autonomous system. According to different dynamical behaviors, we explore the dynamical evolution of existing attractors, which reveals the coexistence of a quasi-periodic attractor with diverse types of bursting attractors. Further investigation shows that the coexisting steady states may cause spiking oscillations to behave in combination of a 2D torus and a limit cycle. We also identify a period-2 cycle bursting attractor as well as a quasi-periodic attractor according to the period-2 limit cycle.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slow-Fast Dynamics of a Coupled Oscillator with Periodic Excitation\",\"authors\":\"Yibo Xia, Jingwei He, Jürgen Kurths, Qinsheng Bi\",\"doi\":\"10.1142/s0218127423500931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the influence of the coexisting steady states in high-dimensional systems on the dynamical evolution of the vector field when a slow-varying periodic excitation is introduced. The model under consideration is a coupled system of Bonhöffer–van der Pol (BVP) equations with a slow-varying periodic excitation. We apply the modified slow–fast analysis method to perform a detailed study on all the equilibrium branches and their bifurcations of the generalized autonomous system. According to different dynamical behaviors, we explore the dynamical evolution of existing attractors, which reveals the coexistence of a quasi-periodic attractor with diverse types of bursting attractors. Further investigation shows that the coexisting steady states may cause spiking oscillations to behave in combination of a 2D torus and a limit cycle. We also identify a period-2 cycle bursting attractor as well as a quasi-periodic attractor according to the period-2 limit cycle.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423500931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究了在引入慢变周期激励时,高维系统中共存稳态对矢量场动力学演化的影响。所考虑的模型是一个具有慢变周期激励的Bonhöffer-van der Pol (BVP)方程耦合系统。应用改进的慢-快分析方法对广义自治系统的所有平衡分支及其分支进行了详细的研究。根据不同的动力学行为,我们探索了现有吸引子的动力学演化,揭示了准周期吸引子与不同类型的爆发吸引子共存。进一步的研究表明,在二维环面和极限环的组合中,共存的稳态可能导致尖峰振荡。根据周期-2极限环,我们还确定了周期-2环破裂吸引子和拟周期吸引子。
Slow-Fast Dynamics of a Coupled Oscillator with Periodic Excitation
We study the influence of the coexisting steady states in high-dimensional systems on the dynamical evolution of the vector field when a slow-varying periodic excitation is introduced. The model under consideration is a coupled system of Bonhöffer–van der Pol (BVP) equations with a slow-varying periodic excitation. We apply the modified slow–fast analysis method to perform a detailed study on all the equilibrium branches and their bifurcations of the generalized autonomous system. According to different dynamical behaviors, we explore the dynamical evolution of existing attractors, which reveals the coexistence of a quasi-periodic attractor with diverse types of bursting attractors. Further investigation shows that the coexisting steady states may cause spiking oscillations to behave in combination of a 2D torus and a limit cycle. We also identify a period-2 cycle bursting attractor as well as a quasi-periodic attractor according to the period-2 limit cycle.