测试布尔函数的量子算法

Dominik F. Floess, E. Andersson, M. Hillery
{"title":"测试布尔函数的量子算法","authors":"Dominik F. Floess, E. Andersson, M. Hillery","doi":"10.4204/EPTCS.26.9","DOIUrl":null,"url":null,"abstract":"We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.","PeriodicalId":88470,"journal":{"name":"Dialogues in cardiovascular medicine : DCM","volume":"1 3 1","pages":"101-108"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Quantum algorithms for testing Boolean functions\",\"authors\":\"Dominik F. Floess, E. Andersson, M. Hillery\",\"doi\":\"10.4204/EPTCS.26.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.\",\"PeriodicalId\":88470,\"journal\":{\"name\":\"Dialogues in cardiovascular medicine : DCM\",\"volume\":\"1 3 1\",\"pages\":\"101-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogues in cardiovascular medicine : DCM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.26.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in cardiovascular medicine : DCM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.26.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们讨论量子算法,基于Bernstein-Vazirani算法,用于查找布尔函数所依赖的变量。有2^n个可能的n个变量的线性布尔函数;给定一个线性布尔函数,Bernstein-Vazirani量子算法可以只用一个函数查询就确定地识别出给定的这些布尔函数中的哪一个。同样的量子算法也可以用来学习其他类型的布尔函数所依赖的输入变量,其成功概率取决于被测试的布尔函数的形式,但不取决于输入变量的总数。我们还概述了一个程序,以进一步扩大成功的概率,基于另一种量子算法,格罗弗搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum algorithms for testing Boolean functions
We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信