虚2类幂零群中的方程

IF 0.1 Q4 MATHEMATICS
A. Levine
{"title":"虚2类幂零群中的方程","authors":"A. Levine","doi":"10.46298/jgcc.2022.14.1.9776","DOIUrl":null,"url":null,"abstract":"We give an algorithm that decides whether a single equation in a group that\nis virtually a class $2$ nilpotent group with a virtually cyclic commutator\nsubgroup, such as the Heisenberg group, admits a solution. This generalises the\nwork of Duchin, Liang and Shapiro to finite extensions.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1635 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equations in virtually class 2 nilpotent groups\",\"authors\":\"A. Levine\",\"doi\":\"10.46298/jgcc.2022.14.1.9776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an algorithm that decides whether a single equation in a group that\\nis virtually a class $2$ nilpotent group with a virtually cyclic commutator\\nsubgroup, such as the Heisenberg group, admits a solution. This generalises the\\nwork of Duchin, Liang and Shapiro to finite extensions.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1635 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2022.14.1.9776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2022.14.1.9776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一种算法,用于判定具有虚循环对易子群(如Heisenberg群)的虚类$2$幂零群中的单个方程是否有解。这将Duchin, Liang和Shapiro的工作推广到有限扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equations in virtually class 2 nilpotent groups
We give an algorithm that decides whether a single equation in a group that is virtually a class $2$ nilpotent group with a virtually cyclic commutator subgroup, such as the Heisenberg group, admits a solution. This generalises the work of Duchin, Liang and Shapiro to finite extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信