{"title":"虚2类幂零群中的方程","authors":"A. Levine","doi":"10.46298/jgcc.2022.14.1.9776","DOIUrl":null,"url":null,"abstract":"We give an algorithm that decides whether a single equation in a group that\nis virtually a class $2$ nilpotent group with a virtually cyclic commutator\nsubgroup, such as the Heisenberg group, admits a solution. This generalises the\nwork of Duchin, Liang and Shapiro to finite extensions.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1635 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equations in virtually class 2 nilpotent groups\",\"authors\":\"A. Levine\",\"doi\":\"10.46298/jgcc.2022.14.1.9776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an algorithm that decides whether a single equation in a group that\\nis virtually a class $2$ nilpotent group with a virtually cyclic commutator\\nsubgroup, such as the Heisenberg group, admits a solution. This generalises the\\nwork of Duchin, Liang and Shapiro to finite extensions.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1635 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2022.14.1.9776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2022.14.1.9776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We give an algorithm that decides whether a single equation in a group that
is virtually a class $2$ nilpotent group with a virtually cyclic commutator
subgroup, such as the Heisenberg group, admits a solution. This generalises the
work of Duchin, Liang and Shapiro to finite extensions.