{"title":"少数非零位数整数的乘积","authors":"H. Kaneko, T. Stoll","doi":"10.2478/udt-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract Let s(n) be the number of nonzero bits in the binary digital expansion of the integer n. We study, for fixed k, ℓ, m, the Diophantine system s(ab)= k, s(a)= ℓ, and s(b)= m in odd integer variables a, b.When k =2 or k = 3, we establish a bound on ab in terms of ℓ and m. While such a bound does not exist in the case of k =4, we give an upper bound for min{a, b} in terms of ℓ and m.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"7 1","pages":"11 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Products of Integers with Few Nonzero Digits\",\"authors\":\"H. Kaneko, T. Stoll\",\"doi\":\"10.2478/udt-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let s(n) be the number of nonzero bits in the binary digital expansion of the integer n. We study, for fixed k, ℓ, m, the Diophantine system s(ab)= k, s(a)= ℓ, and s(b)= m in odd integer variables a, b.When k =2 or k = 3, we establish a bound on ab in terms of ℓ and m. While such a bound does not exist in the case of k =4, we give an upper bound for min{a, b} in terms of ℓ and m.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"7 1\",\"pages\":\"11 - 28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
抽象让年代(n)的非零位二进制数字整数n。我们研究的扩张,固定k,ℓ,m,丢番图系统s (ab) = k s (a) =ℓ,和s (b) = m在奇数变量,b.When k = 2或k = 3,我们建立一个绑定abℓ和m。在这样一个绑定不存在k = 4的情况下,我们给一个上界最小{a、b}ℓ和m。
Abstract Let s(n) be the number of nonzero bits in the binary digital expansion of the integer n. We study, for fixed k, ℓ, m, the Diophantine system s(ab)= k, s(a)= ℓ, and s(b)= m in odd integer variables a, b.When k =2 or k = 3, we establish a bound on ab in terms of ℓ and m. While such a bound does not exist in the case of k =4, we give an upper bound for min{a, b} in terms of ℓ and m.