迈向代数网络信息论:线性函数的分布有损计算

S. Lim, Chen Feng, A. Pastore, B. Nazer, M. Gastpar
{"title":"迈向代数网络信息论:线性函数的分布有损计算","authors":"S. Lim, Chen Feng, A. Pastore, B. Nazer, M. Gastpar","doi":"10.1109/ISIT.2019.8849363","DOIUrl":null,"url":null,"abstract":"Consider the important special case of the K-user distributed source coding problem where the decoder only wishes to recover one or more linear combinations of the sources. The work of Körner and Marton demonstrated that, in some cases, the optimal rate region is attained by random linear codes, and strictly improves upon the best-known achievable rate region established via random i.i.d. codes. Recent efforts have sought to develop a framework for characterizing the achievable rate region for nested linear codes via joint typicality encoding and decoding. Here, we make further progress along this direction by proposing an achievable rate region for simultaneous joint typicality decoding of nested linear codes. Our approach generalizes the results of Körner and Marton to computing an arbitrary number of linear combinations and to the lossy computation setting.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"239 1","pages":"1827-1831"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards an Algebraic Network Information Theory: Distributed Lossy Computation of Linear Functions\",\"authors\":\"S. Lim, Chen Feng, A. Pastore, B. Nazer, M. Gastpar\",\"doi\":\"10.1109/ISIT.2019.8849363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the important special case of the K-user distributed source coding problem where the decoder only wishes to recover one or more linear combinations of the sources. The work of Körner and Marton demonstrated that, in some cases, the optimal rate region is attained by random linear codes, and strictly improves upon the best-known achievable rate region established via random i.i.d. codes. Recent efforts have sought to develop a framework for characterizing the achievable rate region for nested linear codes via joint typicality encoding and decoding. Here, we make further progress along this direction by proposing an achievable rate region for simultaneous joint typicality decoding of nested linear codes. Our approach generalizes the results of Körner and Marton to computing an arbitrary number of linear combinations and to the lossy computation setting.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"239 1\",\"pages\":\"1827-1831\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

考虑k用户分布式源编码问题的重要特殊情况,其中解码器只希望恢复源的一个或多个线性组合。Körner和Marton的工作表明,在某些情况下,最佳速率区域是由随机线性码获得的,并且严格改进了通过随机识别码建立的最知名的可实现速率区域。最近的努力试图通过联合典型编码和解码来开发一个框架来表征嵌套线性码的可实现速率区域。在这里,我们沿着这个方向进一步发展,提出了一个可实现的速率区域,用于嵌套线性码的同时联合典型解码。我们的方法将Körner和Marton的结果推广到计算任意数量的线性组合和有损计算设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an Algebraic Network Information Theory: Distributed Lossy Computation of Linear Functions
Consider the important special case of the K-user distributed source coding problem where the decoder only wishes to recover one or more linear combinations of the sources. The work of Körner and Marton demonstrated that, in some cases, the optimal rate region is attained by random linear codes, and strictly improves upon the best-known achievable rate region established via random i.i.d. codes. Recent efforts have sought to develop a framework for characterizing the achievable rate region for nested linear codes via joint typicality encoding and decoding. Here, we make further progress along this direction by proposing an achievable rate region for simultaneous joint typicality decoding of nested linear codes. Our approach generalizes the results of Körner and Marton to computing an arbitrary number of linear combinations and to the lossy computation setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信