{"title":"一类不可逆端口哈密顿系统的观测器设计","authors":"Saida Zenfari, M. Laabissi, M. E. Achhab","doi":"10.11121/ijocta.2023.1072","DOIUrl":null,"url":null,"abstract":"In this paper we address the state estimation problem of a particular class of irreversible port Hamiltonian systems (IPHS), which are assumed to be partially observed. Our main contribution consists to design an observer such that the augmented system (plant + observer) is strictly passive. Under some additional assumptions, a Lyapunov function is constructed to ensure the stability of the coupled system. Finally, the proposed methodology is applied to the gas piston system model. Some simulation results are also presented.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"300 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Observer design for a class of irreversible port Hamiltonian systems\",\"authors\":\"Saida Zenfari, M. Laabissi, M. E. Achhab\",\"doi\":\"10.11121/ijocta.2023.1072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the state estimation problem of a particular class of irreversible port Hamiltonian systems (IPHS), which are assumed to be partially observed. Our main contribution consists to design an observer such that the augmented system (plant + observer) is strictly passive. Under some additional assumptions, a Lyapunov function is constructed to ensure the stability of the coupled system. Finally, the proposed methodology is applied to the gas piston system model. Some simulation results are also presented.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"300 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.2023.1072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Observer design for a class of irreversible port Hamiltonian systems
In this paper we address the state estimation problem of a particular class of irreversible port Hamiltonian systems (IPHS), which are assumed to be partially observed. Our main contribution consists to design an observer such that the augmented system (plant + observer) is strictly passive. Under some additional assumptions, a Lyapunov function is constructed to ensure the stability of the coupled system. Finally, the proposed methodology is applied to the gas piston system model. Some simulation results are also presented.