{"title":"为非机器学习专家设计交互式迁移学习工具","authors":"Swati Mishra, Jeffrey M. Rzeszotarski","doi":"10.1145/3411764.3445096","DOIUrl":null,"url":null,"abstract":"Interactive machine learning (iML) tools help to make ML accessible to users with limited ML expertise. However, gathering necessary training data and expertise for model-building remains challenging. Transfer learning, a process where learned representations from a model trained on potentially terabytes of data can be transferred to a new, related task, offers the possibility of providing ”building blocks” for non-expert users to quickly and effectively apply ML in their work. However, transfer learning largely remains an expert tool due to its high complexity. In this paper, we design a prototype to understand non-expert user behavior in an interactive environment that supports transfer learning. Our findings reveal a series of data- and perception-driven decision-making strategies non-expert users employ, to (in)effectively transfer elements using their domain expertise. Finally, we synthesize design implications which might inform future interactive transfer learning environments.","PeriodicalId":20451,"journal":{"name":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Designing Interactive Transfer Learning Tools for ML Non-Experts\",\"authors\":\"Swati Mishra, Jeffrey M. Rzeszotarski\",\"doi\":\"10.1145/3411764.3445096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive machine learning (iML) tools help to make ML accessible to users with limited ML expertise. However, gathering necessary training data and expertise for model-building remains challenging. Transfer learning, a process where learned representations from a model trained on potentially terabytes of data can be transferred to a new, related task, offers the possibility of providing ”building blocks” for non-expert users to quickly and effectively apply ML in their work. However, transfer learning largely remains an expert tool due to its high complexity. In this paper, we design a prototype to understand non-expert user behavior in an interactive environment that supports transfer learning. Our findings reveal a series of data- and perception-driven decision-making strategies non-expert users employ, to (in)effectively transfer elements using their domain expertise. Finally, we synthesize design implications which might inform future interactive transfer learning environments.\",\"PeriodicalId\":20451,\"journal\":{\"name\":\"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411764.3445096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411764.3445096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing Interactive Transfer Learning Tools for ML Non-Experts
Interactive machine learning (iML) tools help to make ML accessible to users with limited ML expertise. However, gathering necessary training data and expertise for model-building remains challenging. Transfer learning, a process where learned representations from a model trained on potentially terabytes of data can be transferred to a new, related task, offers the possibility of providing ”building blocks” for non-expert users to quickly and effectively apply ML in their work. However, transfer learning largely remains an expert tool due to its high complexity. In this paper, we design a prototype to understand non-expert user behavior in an interactive environment that supports transfer learning. Our findings reveal a series of data- and perception-driven decision-making strategies non-expert users employ, to (in)effectively transfer elements using their domain expertise. Finally, we synthesize design implications which might inform future interactive transfer learning environments.