{"title":"论量子力学物理公理的半经典方法和光的新波粒解释","authors":"A. Nechayev","doi":"10.11648/j.ajmp.20200903.12","DOIUrl":null,"url":null,"abstract":"A new approach to the physical axiomatic of quantum mechanics is proposed. The basis of this approach is the rejection of the idea of an electron as a point particle. To describe the dynamics of the material substance of the electron, a new AMT (Action-Matter-Transfer) equation based on the Hamilton-Jacobi equation is proposed. This nonlinear equation simply transforms into the Schrodinger equation which becomes an intermediate step for solving a more general equation that describes the actual mass and charge density of an electron cloud. The dimensionless density of the material substance of the electron is equal to the square of the wave function. The nonlinearity of the AMT-equation make us question the validity of the quantum mechanical principle of superposition. The representation of an electron as a cloud with a distributed density helps to explain the interference effects in the well-known double-slit experiment. It is shown that light emission can occur in full accordance with classical electrodynamics when the material substance of an electron is spatially redistributed. Our approach makes it possible to interpret light as a chain of photons, each of which represents a “particle” of an electromagnetic wave propagating in space. The direction of radiation can be determined by the axis of rotation of the electron cloud due to the presence of the spin which turns the electron into elementary magnet, so the two electron clouds can form in an atom a stable structure of paired electrons in the form of two hemispheres rotating in one direction. In the framework of the quasi-classical concept of photon generation, the processes of reflection of light, its transmission through a transparent medium, and birefringence are discussed as well as Compton effect and laser emission.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"1 1","pages":"48"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Semi-classical Approach to the Physical Axiomatic of Quantum Mechanics and the New Wave-Particle Interpretation of Light\",\"authors\":\"A. Nechayev\",\"doi\":\"10.11648/j.ajmp.20200903.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to the physical axiomatic of quantum mechanics is proposed. The basis of this approach is the rejection of the idea of an electron as a point particle. To describe the dynamics of the material substance of the electron, a new AMT (Action-Matter-Transfer) equation based on the Hamilton-Jacobi equation is proposed. This nonlinear equation simply transforms into the Schrodinger equation which becomes an intermediate step for solving a more general equation that describes the actual mass and charge density of an electron cloud. The dimensionless density of the material substance of the electron is equal to the square of the wave function. The nonlinearity of the AMT-equation make us question the validity of the quantum mechanical principle of superposition. The representation of an electron as a cloud with a distributed density helps to explain the interference effects in the well-known double-slit experiment. It is shown that light emission can occur in full accordance with classical electrodynamics when the material substance of an electron is spatially redistributed. Our approach makes it possible to interpret light as a chain of photons, each of which represents a “particle” of an electromagnetic wave propagating in space. The direction of radiation can be determined by the axis of rotation of the electron cloud due to the presence of the spin which turns the electron into elementary magnet, so the two electron clouds can form in an atom a stable structure of paired electrons in the form of two hemispheres rotating in one direction. In the framework of the quasi-classical concept of photon generation, the processes of reflection of light, its transmission through a transparent medium, and birefringence are discussed as well as Compton effect and laser emission.\",\"PeriodicalId\":7717,\"journal\":{\"name\":\"American Journal of Modern Physics\",\"volume\":\"1 1\",\"pages\":\"48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.ajmp.20200903.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajmp.20200903.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Semi-classical Approach to the Physical Axiomatic of Quantum Mechanics and the New Wave-Particle Interpretation of Light
A new approach to the physical axiomatic of quantum mechanics is proposed. The basis of this approach is the rejection of the idea of an electron as a point particle. To describe the dynamics of the material substance of the electron, a new AMT (Action-Matter-Transfer) equation based on the Hamilton-Jacobi equation is proposed. This nonlinear equation simply transforms into the Schrodinger equation which becomes an intermediate step for solving a more general equation that describes the actual mass and charge density of an electron cloud. The dimensionless density of the material substance of the electron is equal to the square of the wave function. The nonlinearity of the AMT-equation make us question the validity of the quantum mechanical principle of superposition. The representation of an electron as a cloud with a distributed density helps to explain the interference effects in the well-known double-slit experiment. It is shown that light emission can occur in full accordance with classical electrodynamics when the material substance of an electron is spatially redistributed. Our approach makes it possible to interpret light as a chain of photons, each of which represents a “particle” of an electromagnetic wave propagating in space. The direction of radiation can be determined by the axis of rotation of the electron cloud due to the presence of the spin which turns the electron into elementary magnet, so the two electron clouds can form in an atom a stable structure of paired electrons in the form of two hemispheres rotating in one direction. In the framework of the quasi-classical concept of photon generation, the processes of reflection of light, its transmission through a transparent medium, and birefringence are discussed as well as Compton effect and laser emission.