利用直流高压对阿莫西林粉末进行电液干燥

Nicholas, T. Abuzairi
{"title":"利用直流高压对阿莫西林粉末进行电液干燥","authors":"Nicholas, T. Abuzairi","doi":"10.1063/1.5139385","DOIUrl":null,"url":null,"abstract":"Electrohydrodynamic drying (EHD) processes have been applied in many experiments. However, EHD rarely applied to drying medications, specifically medical powders. The EHD process reduces the water level of materials through a coronal wind by placing them between two electrodes that conduct a strong electric field. In this study, EHD is applied using needles with copper plates as the two electrodes. Within the same surface area, different numbers of needles (2×2, 3×3, and 4×4) are arranged to conduct the positive charge using the copper plate as the grounding system. By using various numbers of needles and modifying the gap between them and the material, the effect of the EHD process on the material, namely amoxicillin powder, is determined. Based on the experimental results, a 2×2 needle arrangement and 2-cm gap between the needles and the sample have the fastest drying speed as compared to other needle numbers and gaps.Electrohydrodynamic drying (EHD) processes have been applied in many experiments. However, EHD rarely applied to drying medications, specifically medical powders. The EHD process reduces the water level of materials through a coronal wind by placing them between two electrodes that conduct a strong electric field. In this study, EHD is applied using needles with copper plates as the two electrodes. Within the same surface area, different numbers of needles (2×2, 3×3, and 4×4) are arranged to conduct the positive charge using the copper plate as the grounding system. By using various numbers of needles and modifying the gap between them and the material, the effect of the EHD process on the material, namely amoxicillin powder, is determined. Based on the experimental results, a 2×2 needle arrangement and 2-cm gap between the needles and the sample have the fastest drying speed as compared to other needle numbers and gaps.","PeriodicalId":22239,"journal":{"name":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrohydrodynamic drying process of the amoxicillin powder using a high direct current (DC) voltage\",\"authors\":\"Nicholas, T. Abuzairi\",\"doi\":\"10.1063/1.5139385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrohydrodynamic drying (EHD) processes have been applied in many experiments. However, EHD rarely applied to drying medications, specifically medical powders. The EHD process reduces the water level of materials through a coronal wind by placing them between two electrodes that conduct a strong electric field. In this study, EHD is applied using needles with copper plates as the two electrodes. Within the same surface area, different numbers of needles (2×2, 3×3, and 4×4) are arranged to conduct the positive charge using the copper plate as the grounding system. By using various numbers of needles and modifying the gap between them and the material, the effect of the EHD process on the material, namely amoxicillin powder, is determined. Based on the experimental results, a 2×2 needle arrangement and 2-cm gap between the needles and the sample have the fastest drying speed as compared to other needle numbers and gaps.Electrohydrodynamic drying (EHD) processes have been applied in many experiments. However, EHD rarely applied to drying medications, specifically medical powders. The EHD process reduces the water level of materials through a coronal wind by placing them between two electrodes that conduct a strong electric field. In this study, EHD is applied using needles with copper plates as the two electrodes. Within the same surface area, different numbers of needles (2×2, 3×3, and 4×4) are arranged to conduct the positive charge using the copper plate as the grounding system. By using various numbers of needles and modifying the gap between them and the material, the effect of the EHD process on the material, namely amoxicillin powder, is determined. Based on the experimental results, a 2×2 needle arrangement and 2-cm gap between the needles and the sample have the fastest drying speed as compared to other needle numbers and gaps.\",\"PeriodicalId\":22239,\"journal\":{\"name\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5139385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5139385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电液动力干燥(EHD)工艺已在许多实验中得到应用。然而,EHD很少应用于干燥药物,特别是药用粉末。EHD过程通过日冕风将材料放置在两个传导强电场的电极之间,从而降低材料的水位。在本研究中,EHD采用带铜板的针作为两个电极。在同一表面积内,采用不同数量的针(2×2、3×3、4×4)以铜板为接地系统引导正电荷。通过使用不同数量的针,并修改针与物料之间的间隙,确定EHD工艺对物料即阿莫西林粉末的影响。实验结果表明,与其他针数和针距相比,2×2针距和针距2 cm的针距与样品的干燥速度最快。电液动力干燥(EHD)工艺已在许多实验中得到应用。然而,EHD很少应用于干燥药物,特别是药用粉末。EHD过程通过日冕风将材料放置在两个传导强电场的电极之间,从而降低材料的水位。在本研究中,EHD采用带铜板的针作为两个电极。在同一表面积内,采用不同数量的针(2×2、3×3、4×4)以铜板为接地系统引导正电荷。通过使用不同数量的针,并修改针与物料之间的间隙,确定EHD工艺对物料即阿莫西林粉末的影响。实验结果表明,与其他针数和针距相比,2×2针距和针距2 cm的针距与样品的干燥速度最快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrohydrodynamic drying process of the amoxicillin powder using a high direct current (DC) voltage
Electrohydrodynamic drying (EHD) processes have been applied in many experiments. However, EHD rarely applied to drying medications, specifically medical powders. The EHD process reduces the water level of materials through a coronal wind by placing them between two electrodes that conduct a strong electric field. In this study, EHD is applied using needles with copper plates as the two electrodes. Within the same surface area, different numbers of needles (2×2, 3×3, and 4×4) are arranged to conduct the positive charge using the copper plate as the grounding system. By using various numbers of needles and modifying the gap between them and the material, the effect of the EHD process on the material, namely amoxicillin powder, is determined. Based on the experimental results, a 2×2 needle arrangement and 2-cm gap between the needles and the sample have the fastest drying speed as compared to other needle numbers and gaps.Electrohydrodynamic drying (EHD) processes have been applied in many experiments. However, EHD rarely applied to drying medications, specifically medical powders. The EHD process reduces the water level of materials through a coronal wind by placing them between two electrodes that conduct a strong electric field. In this study, EHD is applied using needles with copper plates as the two electrodes. Within the same surface area, different numbers of needles (2×2, 3×3, and 4×4) are arranged to conduct the positive charge using the copper plate as the grounding system. By using various numbers of needles and modifying the gap between them and the material, the effect of the EHD process on the material, namely amoxicillin powder, is determined. Based on the experimental results, a 2×2 needle arrangement and 2-cm gap between the needles and the sample have the fastest drying speed as compared to other needle numbers and gaps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信