近似原型的时间序列聚类

Ville Hautamäki, Pekka Nykänen, P. Fränti
{"title":"近似原型的时间序列聚类","authors":"Ville Hautamäki, Pekka Nykänen, P. Fränti","doi":"10.1109/ICPR.2008.4761105","DOIUrl":null,"url":null,"abstract":"Clustering time-series data poses problems, which do not exist in traditional clustering in Euclidean space. Specifically, cluster prototype needs to be calculated, where common solution is to use cluster medoid. In this work, we define an optimal prototype as an optimization problem and propose a local search solution to it. We experimentally compare different time-series clustering methods and find out that the proposed prototype with agglomerative clustering followed by k-means algorithm provides best clustering accuracy.","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"28 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Time-series clustering by approximate prototypes\",\"authors\":\"Ville Hautamäki, Pekka Nykänen, P. Fränti\",\"doi\":\"10.1109/ICPR.2008.4761105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering time-series data poses problems, which do not exist in traditional clustering in Euclidean space. Specifically, cluster prototype needs to be calculated, where common solution is to use cluster medoid. In this work, we define an optimal prototype as an optimization problem and propose a local search solution to it. We experimentally compare different time-series clustering methods and find out that the proposed prototype with agglomerative clustering followed by k-means algorithm provides best clustering accuracy.\",\"PeriodicalId\":74516,\"journal\":{\"name\":\"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition\",\"volume\":\"28 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2008.4761105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2008.4761105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

对时间序列数据进行聚类会产生传统的欧氏空间聚类所不存在的问题。具体来说,需要计算集群原型,通常的解决方案是使用集群介质。在这项工作中,我们将最优原型定义为一个优化问题,并提出了一个局部搜索解决方案。实验比较了不同的时间序列聚类方法,发现基于k-means算法的聚类方法具有最佳的聚类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-series clustering by approximate prototypes
Clustering time-series data poses problems, which do not exist in traditional clustering in Euclidean space. Specifically, cluster prototype needs to be calculated, where common solution is to use cluster medoid. In this work, we define an optimal prototype as an optimization problem and propose a local search solution to it. We experimentally compare different time-series clustering methods and find out that the proposed prototype with agglomerative clustering followed by k-means algorithm provides best clustering accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信