Kähler和Kähler四元数流形上的布朗运动和热核下界

Fabrice Baudoin, Guang Yang
{"title":"Kähler和Kähler四元数流形上的布朗运动和热核下界","authors":"Fabrice Baudoin, Guang Yang","doi":"10.1093/imrn/rnaa199","DOIUrl":null,"url":null,"abstract":"We study the radial parts of the Brownian motions on K\\\"ahler and quaternion K\\\"ahler manifolds. Thanks to sharp Laplacian comparison theorems, we deduce as a consequence a sharp Cheeger-Yau type lower bound for the heat kernels of such manifolds and also sharp Cheng's type estimates for the Dirichlet eigenvalues of metric balls.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds\",\"authors\":\"Fabrice Baudoin, Guang Yang\",\"doi\":\"10.1093/imrn/rnaa199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the radial parts of the Brownian motions on K\\\\\\\"ahler and quaternion K\\\\\\\"ahler manifolds. Thanks to sharp Laplacian comparison theorems, we deduce as a consequence a sharp Cheeger-Yau type lower bound for the heat kernels of such manifolds and also sharp Cheng's type estimates for the Dirichlet eigenvalues of metric balls.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了K\ ahler流形和四元数K\ ahler流形上布朗运动的径向部分。借助于尖锐的拉普拉斯比较定理,我们推导出了这种流形的热核的尖锐Cheeger-Yau型下界和度量球的Dirichlet特征值的尖锐Cheng型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brownian Motions and Heat Kernel Lower Bounds on Kähler and Quaternion Kähler Manifolds
We study the radial parts of the Brownian motions on K\"ahler and quaternion K\"ahler manifolds. Thanks to sharp Laplacian comparison theorems, we deduce as a consequence a sharp Cheeger-Yau type lower bound for the heat kernels of such manifolds and also sharp Cheng's type estimates for the Dirichlet eigenvalues of metric balls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信