具有非局部和脉冲条件的半线性微分方程温和解的存在性

L. Olszowy
{"title":"具有非局部和脉冲条件的半线性微分方程温和解的存在性","authors":"L. Olszowy","doi":"10.2478/s11533-013-0367-9","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of mild solutions for impulsive semilinear differential equations with nonlocal conditions. Using the technique of measures of noncompactness in Banach and Fréchet spaces of piecewise continuous functions, existence results are obtained both on bounded and unbounded intervals, when the impulsive functions and the nonlocal item are not compact in the space of piecewise continuous functions but they are continuous and Lipschitzian with respect to some measure of noncompactness, and the linear part generates only a strongly continuous evolution system.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"49 1","pages":"623-635"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Existence of mild solutions for semilinear differential equations with nonlocal and impulsive conditions\",\"authors\":\"L. Olszowy\",\"doi\":\"10.2478/s11533-013-0367-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of mild solutions for impulsive semilinear differential equations with nonlocal conditions. Using the technique of measures of noncompactness in Banach and Fréchet spaces of piecewise continuous functions, existence results are obtained both on bounded and unbounded intervals, when the impulsive functions and the nonlocal item are not compact in the space of piecewise continuous functions but they are continuous and Lipschitzian with respect to some measure of noncompactness, and the linear part generates only a strongly continuous evolution system.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"49 1\",\"pages\":\"623-635\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0367-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0367-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了一类具有非局部条件的脉冲半线性微分方程温和解的存在性。利用分段连续函数的Banach和fr切空间中的非紧测度技术,得到了脉冲函数和非局部项在分段连续函数的空间中不紧但在某些非紧测度上是连续的和Lipschitzian的,且线性部分只生成一个强连续的演化系统在有界和无界区间上的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of mild solutions for semilinear differential equations with nonlocal and impulsive conditions
This paper is concerned with the existence of mild solutions for impulsive semilinear differential equations with nonlocal conditions. Using the technique of measures of noncompactness in Banach and Fréchet spaces of piecewise continuous functions, existence results are obtained both on bounded and unbounded intervals, when the impulsive functions and the nonlocal item are not compact in the space of piecewise continuous functions but they are continuous and Lipschitzian with respect to some measure of noncompactness, and the linear part generates only a strongly continuous evolution system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信