高实用项目区间序列模式挖掘算法

Trần Huy Dương, N. Thang, V. D. Thi
{"title":"高实用项目区间序列模式挖掘算法","authors":"Trần Huy Dương, N. Thang, V. D. Thi","doi":"10.15625/1813-9663/36/1/14398","DOIUrl":null,"url":null,"abstract":"High utility sequential pattern mining is a popular topic in data mining with the main purpose is to extract sequential patterns with high utility in the sequence database. Many recent works have proposed methods to solve this problem. However, most of them does not consider item intervals of sequential patterns which can lead to the extraction of sequential patterns with too long item interval, thus making little sense. In this paper, we propose a High Utility Item Interval Sequential Pattern (HUISP) algorithm to solve this problem. Our algorithm uses pattern growth approach and some techniques to increase algorithm’s performance.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"1 1","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIGH UTILITY ITEM INTERVAL SEQUENTIAL PATTERN MINING ALGORITHM\",\"authors\":\"Trần Huy Dương, N. Thang, V. D. Thi\",\"doi\":\"10.15625/1813-9663/36/1/14398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High utility sequential pattern mining is a popular topic in data mining with the main purpose is to extract sequential patterns with high utility in the sequence database. Many recent works have proposed methods to solve this problem. However, most of them does not consider item intervals of sequential patterns which can lead to the extraction of sequential patterns with too long item interval, thus making little sense. In this paper, we propose a High Utility Item Interval Sequential Pattern (HUISP) algorithm to solve this problem. Our algorithm uses pattern growth approach and some techniques to increase algorithm’s performance.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"1 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/36/1/14398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/36/1/14398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效用序列模式挖掘是数据挖掘领域的一个热门课题,其主要目的是从序列数据库中提取高效用序列模式。最近的许多研究都提出了解决这个问题的方法。然而,大多数方法没有考虑序列模式的项间隔,导致提取的序列模式项间隔过长,意义不大。在本文中,我们提出了一种高效用项区间序列模式(HUISP)算法来解决这个问题。我们的算法采用模式增长方法和一些技术来提高算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIGH UTILITY ITEM INTERVAL SEQUENTIAL PATTERN MINING ALGORITHM
High utility sequential pattern mining is a popular topic in data mining with the main purpose is to extract sequential patterns with high utility in the sequence database. Many recent works have proposed methods to solve this problem. However, most of them does not consider item intervals of sequential patterns which can lead to the extraction of sequential patterns with too long item interval, thus making little sense. In this paper, we propose a High Utility Item Interval Sequential Pattern (HUISP) algorithm to solve this problem. Our algorithm uses pattern growth approach and some techniques to increase algorithm’s performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信