Cuckoo Search增强MapReduce在大数据流预测调度中的应用

N. Arunadevi, Vidyaa Thulasiraaman
{"title":"Cuckoo Search增强MapReduce在大数据流预测调度中的应用","authors":"N. Arunadevi, Vidyaa Thulasiraaman","doi":"10.4018/ijskd.297043","DOIUrl":null,"url":null,"abstract":"Handling an information stream is a basic report for streaming application. There were numerous strategies which help during Bigdata streaming, however it can't deal with the tremendous information. To advance the productivity with least time intricacy, a Cuckoo Search Augmented Map Reduce for Predictive Scheduling (CSA-MRPS) system is presented. This technique incorporates cycles in preprocessing and prescient booking for stream information examination. In preprocessing, nonstop information streams are discretized utilizing Khiops and it begins from the constant time spans, consolidates the closest time as indicated by the Chi-square worth with lesser time intricacy. MapReduce work is applied to discretized information for prescient investigation utilizing Multi-Objective Ranked Cuckoo Search Optimization (MRCSA). It characterize the target capacities for the handling units, for example, CPU time, memory utilization, transfer speed use and energy utilization. Thus, CSA-MRPS Mechanism predicts the asset upgraded preparing unit with high position through the planning system.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"261 1","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cuckoo Search Augmented MapReduce for Predictive Scheduling With Big Stream Data\",\"authors\":\"N. Arunadevi, Vidyaa Thulasiraaman\",\"doi\":\"10.4018/ijskd.297043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handling an information stream is a basic report for streaming application. There were numerous strategies which help during Bigdata streaming, however it can't deal with the tremendous information. To advance the productivity with least time intricacy, a Cuckoo Search Augmented Map Reduce for Predictive Scheduling (CSA-MRPS) system is presented. This technique incorporates cycles in preprocessing and prescient booking for stream information examination. In preprocessing, nonstop information streams are discretized utilizing Khiops and it begins from the constant time spans, consolidates the closest time as indicated by the Chi-square worth with lesser time intricacy. MapReduce work is applied to discretized information for prescient investigation utilizing Multi-Objective Ranked Cuckoo Search Optimization (MRCSA). It characterize the target capacities for the handling units, for example, CPU time, memory utilization, transfer speed use and energy utilization. Thus, CSA-MRPS Mechanism predicts the asset upgraded preparing unit with high position through the planning system.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"261 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.297043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.297043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

处理信息流是流应用程序的基本报表。在大数据流过程中,有许多策略可以帮助处理,但它无法处理海量的信息。为了以最小的时间复杂度提高生产效率,提出了一种基于布谷鸟搜索增强映射约简的预测调度(CSA-MRPS)系统。该技术结合了预处理周期和预见性预订,用于流信息检查。在预处理中,利用Khiops将不间断的信息流离散化,从恒定的时间跨度开始,合并卡方值所指示的最近时间,时间复杂性较小。利用多目标排名布谷鸟搜索优化(MRCSA)将MapReduce工作应用于离散信息的预见性调查。它描述了处理单元的目标容量,例如,CPU时间、内存利用率、传输速度使用和能源利用率。因此,CSA-MRPS机制通过规划系统来预测位置较高的资产升级准备单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cuckoo Search Augmented MapReduce for Predictive Scheduling With Big Stream Data
Handling an information stream is a basic report for streaming application. There were numerous strategies which help during Bigdata streaming, however it can't deal with the tremendous information. To advance the productivity with least time intricacy, a Cuckoo Search Augmented Map Reduce for Predictive Scheduling (CSA-MRPS) system is presented. This technique incorporates cycles in preprocessing and prescient booking for stream information examination. In preprocessing, nonstop information streams are discretized utilizing Khiops and it begins from the constant time spans, consolidates the closest time as indicated by the Chi-square worth with lesser time intricacy. MapReduce work is applied to discretized information for prescient investigation utilizing Multi-Objective Ranked Cuckoo Search Optimization (MRCSA). It characterize the target capacities for the handling units, for example, CPU time, memory utilization, transfer speed use and energy utilization. Thus, CSA-MRPS Mechanism predicts the asset upgraded preparing unit with high position through the planning system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信