{"title":"基于改进粒子群优化的功能链接人工神经网络软件成本估算模型","authors":"Zahid Hussain Wani, S. Quadri","doi":"10.1504/IJSI.2019.10018583","DOIUrl":null,"url":null,"abstract":"Software cost estimation is the forecast of development effort and time needed to develop a software project. Estimating software cost is endlessly proving to be a difficult problem and thus catches the attention of many researchers. Recently, the usage of meta-heuristic techniques for software cost estimation is increasingly growing. In this paper, we are proposing a technique consisting of functional link artificial neural network model and particle swarm optimisation algorithm as its training algorithm. Functional link artificial neural network is a high order feedforward artificial neural network consisting of an input layer and an output layer. It reduces the computational complexity and has got the fast learning ability. Particle swarm optimisation does optimisation by iteratively improving a candidate solution. The proposed model has been evaluated on promising datasets using magnitude of relative error and its median as a measure of performance index to simply weigh the obtained quality of estimation.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"12 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An improved particle swarm optimisation-based functional link artificial neural network model for software cost estimation\",\"authors\":\"Zahid Hussain Wani, S. Quadri\",\"doi\":\"10.1504/IJSI.2019.10018583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software cost estimation is the forecast of development effort and time needed to develop a software project. Estimating software cost is endlessly proving to be a difficult problem and thus catches the attention of many researchers. Recently, the usage of meta-heuristic techniques for software cost estimation is increasingly growing. In this paper, we are proposing a technique consisting of functional link artificial neural network model and particle swarm optimisation algorithm as its training algorithm. Functional link artificial neural network is a high order feedforward artificial neural network consisting of an input layer and an output layer. It reduces the computational complexity and has got the fast learning ability. Particle swarm optimisation does optimisation by iteratively improving a candidate solution. The proposed model has been evaluated on promising datasets using magnitude of relative error and its median as a measure of performance index to simply weigh the obtained quality of estimation.\",\"PeriodicalId\":44265,\"journal\":{\"name\":\"International Journal of Swarm Intelligence Research\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Swarm Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSI.2019.10018583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSI.2019.10018583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An improved particle swarm optimisation-based functional link artificial neural network model for software cost estimation
Software cost estimation is the forecast of development effort and time needed to develop a software project. Estimating software cost is endlessly proving to be a difficult problem and thus catches the attention of many researchers. Recently, the usage of meta-heuristic techniques for software cost estimation is increasingly growing. In this paper, we are proposing a technique consisting of functional link artificial neural network model and particle swarm optimisation algorithm as its training algorithm. Functional link artificial neural network is a high order feedforward artificial neural network consisting of an input layer and an output layer. It reduces the computational complexity and has got the fast learning ability. Particle swarm optimisation does optimisation by iteratively improving a candidate solution. The proposed model has been evaluated on promising datasets using magnitude of relative error and its median as a measure of performance index to simply weigh the obtained quality of estimation.
期刊介绍:
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.