TDM-Stargan: Stargan利用时差图从超快动态增强Mri生成动态增强Mri

Young-Tack Oh, Eunsook Ko, Hyunjin Park
{"title":"TDM-Stargan: Stargan利用时差图从超快动态增强Mri生成动态增强Mri","authors":"Young-Tack Oh, Eunsook Ko, Hyunjin Park","doi":"10.1109/ISBI52829.2022.9761463","DOIUrl":null,"url":null,"abstract":"Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive imaging technique to manage many types of cancer including breast cancer. The conventional DCE-MRI takes a long time (7-12 minutes) to acquire and there is a clinical need to reduce scan time. Ultrafast DCE-MRI takes less than a minute to acquire and has sufficient information relative to conventional DCE-MRI. We propose a generative adversarial network (GAN) to generate the delay phase of synthetic conventional DCE-MRI from ultrafast DCE-MRI. We allow our model to better generate the area expected to be a lesion through the difference map of different phases to incorporate time-varying enhancement patterns. The difference map also allows us to generate pseudo tumor labels for segmentation. Our approach was trained and tested on 300 cases using three evaluation metrics. Our method showed better performance (structural similarity index map increase of 11.69%) compared to Pix2Pix baseline method.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"115 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TDM-Stargan: Stargan Using Time Difference Map to Generate Dynamic Contrast-Enhanced Mri from Ultrafast Dynamic Contrast-Enhanced Mri\",\"authors\":\"Young-Tack Oh, Eunsook Ko, Hyunjin Park\",\"doi\":\"10.1109/ISBI52829.2022.9761463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive imaging technique to manage many types of cancer including breast cancer. The conventional DCE-MRI takes a long time (7-12 minutes) to acquire and there is a clinical need to reduce scan time. Ultrafast DCE-MRI takes less than a minute to acquire and has sufficient information relative to conventional DCE-MRI. We propose a generative adversarial network (GAN) to generate the delay phase of synthetic conventional DCE-MRI from ultrafast DCE-MRI. We allow our model to better generate the area expected to be a lesion through the difference map of different phases to incorporate time-varying enhancement patterns. The difference map also allows us to generate pseudo tumor labels for segmentation. Our approach was trained and tested on 300 cases using three evaluation metrics. Our method showed better performance (structural similarity index map increase of 11.69%) compared to Pix2Pix baseline method.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"115 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动态对比增强磁共振成像(DCE-MRI)是一种灵敏的成像技术,可用于治疗包括乳腺癌在内的多种类型的癌症。传统的DCE-MRI需要很长时间(7-12分钟)才能获得,临床需要减少扫描时间。超快DCE-MRI获取时间不到1分钟,相对于传统DCE-MRI具有足够的信息。我们提出了一种生成对抗网络(GAN)来从超快DCE-MRI生成合成常规DCE-MRI的延迟相位。我们允许我们的模型通过不同阶段的差异图更好地生成预期的病变区域,以纳入时变增强模式。差异图还允许我们生成用于分割的伪肿瘤标签。我们的方法在使用三个评估指标的300个案例中进行了培训和测试。与Pix2Pix基线方法相比,我们的方法表现出更好的性能(结构相似指数图提高了11.69%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TDM-Stargan: Stargan Using Time Difference Map to Generate Dynamic Contrast-Enhanced Mri from Ultrafast Dynamic Contrast-Enhanced Mri
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive imaging technique to manage many types of cancer including breast cancer. The conventional DCE-MRI takes a long time (7-12 minutes) to acquire and there is a clinical need to reduce scan time. Ultrafast DCE-MRI takes less than a minute to acquire and has sufficient information relative to conventional DCE-MRI. We propose a generative adversarial network (GAN) to generate the delay phase of synthetic conventional DCE-MRI from ultrafast DCE-MRI. We allow our model to better generate the area expected to be a lesion through the difference map of different phases to incorporate time-varying enhancement patterns. The difference map also allows us to generate pseudo tumor labels for segmentation. Our approach was trained and tested on 300 cases using three evaluation metrics. Our method showed better performance (structural similarity index map increase of 11.69%) compared to Pix2Pix baseline method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信