最小生成树的时间和消息最优分布式算法

Gopal Pandurangan, Peter Robinson, Michele Scquizzato
{"title":"最小生成树的时间和消息最优分布式算法","authors":"Gopal Pandurangan, Peter Robinson, Michele Scquizzato","doi":"10.1145/3055399.3055449","DOIUrl":null,"url":null,"abstract":"This paper presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω(D + √n) [Elkin, SIAM J. Comput. 2006] and the message lower bound of Ω(m) [Kutten et al., J. ACM 2015], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower bound graph construction for which any distributed MST algorithm requires both Ω(D + √n) rounds and Ω(m) messages.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"A time- and message-optimal distributed algorithm for minimum spanning trees\",\"authors\":\"Gopal Pandurangan, Peter Robinson, Michele Scquizzato\",\"doi\":\"10.1145/3055399.3055449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω(D + √n) [Elkin, SIAM J. Comput. 2006] and the message lower bound of Ω(m) [Kutten et al., J. ACM 2015], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower bound graph construction for which any distributed MST algorithm requires both Ω(D + √n) rounds and Ω(m) messages.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文提出了一种随机(Las Vegas)分布式算法,该算法在时间和消息复杂度最优的加权网络中构造最小生成树(MST)。该算法运行时间为Õ(D +√n),交换消息为Õ(m)条(均为大概率),其中n为网络节点数,D为直径,m为边数。这是第一个同时匹配Ω(D +√n)的时间下界[Elkin, SIAM J. Comput. 2006]和Ω(m)的消息下界[Kutten et al., J. ACM 2015]的分布式MST算法,两者都适用于随机蒙特卡罗算法。使用两种完全不同的图结构推导了先验时间和消息下界;显示一个下界的现有下界构造不适用于另一个下界。为了补充我们的算法,我们提出了一个新的下界图构造,其中任何分布式MST算法都需要Ω(D +√n)轮和Ω(m)消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A time- and message-optimal distributed algorithm for minimum spanning trees
This paper presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω(D + √n) [Elkin, SIAM J. Comput. 2006] and the message lower bound of Ω(m) [Kutten et al., J. ACM 2015], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower bound graph construction for which any distributed MST algorithm requires both Ω(D + √n) rounds and Ω(m) messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信