{"title":"压力诱导电离复合耗散的慢磁声波吸收","authors":"T. Mishonov, A. Varonov","doi":"10.1063/5.0013983","DOIUrl":null,"url":null,"abstract":"A new mechanisms for damping of slow magnetosonic waves (SMW) by pressure induced oscillations of the ionization degree is proposed. An explicit formula for the damping rate is quantitatively derived. Physical conditions where the new mechanism will dominate are briefly discussed. The ionization-recombination damping is frequency independent and has no hydrodynamic interpretation. Roughly speaking large area of partially ionized plasma are damper for basses of SMW while usual MHD mechanisms operate as a low pass filter. The derived damping rate is proportional to the square of the sine between the constant magnetic field and the wave-vector. Angular distribution of the spectral density of SMW and Alfven waves (AW) created by turbulent regions and passing through large regions of partially ionized plasma is qualitatively considered. The calculated damping rate is expressed by the electron impact cross section of the hydrogen atom and in short all details of the proposed damping mechanisms are well studied.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Slow magnetosonic wave absorption by pressure induced ionization–recombination dissipation\",\"authors\":\"T. Mishonov, A. Varonov\",\"doi\":\"10.1063/5.0013983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new mechanisms for damping of slow magnetosonic waves (SMW) by pressure induced oscillations of the ionization degree is proposed. An explicit formula for the damping rate is quantitatively derived. Physical conditions where the new mechanism will dominate are briefly discussed. The ionization-recombination damping is frequency independent and has no hydrodynamic interpretation. Roughly speaking large area of partially ionized plasma are damper for basses of SMW while usual MHD mechanisms operate as a low pass filter. The derived damping rate is proportional to the square of the sine between the constant magnetic field and the wave-vector. Angular distribution of the spectral density of SMW and Alfven waves (AW) created by turbulent regions and passing through large regions of partially ionized plasma is qualitatively considered. The calculated damping rate is expressed by the electron impact cross section of the hydrogen atom and in short all details of the proposed damping mechanisms are well studied.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0013983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0013983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Slow magnetosonic wave absorption by pressure induced ionization–recombination dissipation
A new mechanisms for damping of slow magnetosonic waves (SMW) by pressure induced oscillations of the ionization degree is proposed. An explicit formula for the damping rate is quantitatively derived. Physical conditions where the new mechanism will dominate are briefly discussed. The ionization-recombination damping is frequency independent and has no hydrodynamic interpretation. Roughly speaking large area of partially ionized plasma are damper for basses of SMW while usual MHD mechanisms operate as a low pass filter. The derived damping rate is proportional to the square of the sine between the constant magnetic field and the wave-vector. Angular distribution of the spectral density of SMW and Alfven waves (AW) created by turbulent regions and passing through large regions of partially ionized plasma is qualitatively considered. The calculated damping rate is expressed by the electron impact cross section of the hydrogen atom and in short all details of the proposed damping mechanisms are well studied.