实值空白序列的中等规模统计量

IF 0.6 3区 数学 Q3 MATHEMATICS
Nadav Yesha
{"title":"实值空白序列的中等规模统计量","authors":"Nadav Yesha","doi":"10.1017/S0305004123000142","DOIUrl":null,"url":null,"abstract":"Abstract We study intermediate-scale statistics for the fractional parts of the sequence \n$\\left(\\alpha a_{n}\\right)_{n=1}^{\\infty}$\n , where \n$\\left(a_{n}\\right)_{n=1}^{\\infty}$\n is a positive, real-valued lacunary sequence, and \n$\\alpha\\in\\mathbb{R}$\n . In particular, we consider the number of elements \n$S_{N}\\!\\left(L,\\alpha\\right)$\n in a random interval of length \n$L/N$\n , where \n$L=O\\!\\left(N^{1-\\epsilon}\\right)$\n , and show that its variance (the number variance) is asymptotic to L with high probability w.r.t. \n$\\alpha$\n , which is in agreement with the statistics of uniform i.i.d. random points in the unit interval. In addition, we show that the same asymptotic holds almost surely in \n$\\alpha\\in\\mathbb{R}$\n when \n$L=O\\!\\left(N^{1/2-\\epsilon}\\right)$\n . For slowly growing L, we further prove a central limit theorem for \n$S_{N}\\!\\left(L,\\alpha\\right)$\n which holds for almost all \n$\\alpha\\in\\mathbb{R}$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"107 1","pages":"303 - 318"},"PeriodicalIF":0.6000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intermediate-scale statistics for real-valued lacunary sequences\",\"authors\":\"Nadav Yesha\",\"doi\":\"10.1017/S0305004123000142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study intermediate-scale statistics for the fractional parts of the sequence \\n$\\\\left(\\\\alpha a_{n}\\\\right)_{n=1}^{\\\\infty}$\\n , where \\n$\\\\left(a_{n}\\\\right)_{n=1}^{\\\\infty}$\\n is a positive, real-valued lacunary sequence, and \\n$\\\\alpha\\\\in\\\\mathbb{R}$\\n . In particular, we consider the number of elements \\n$S_{N}\\\\!\\\\left(L,\\\\alpha\\\\right)$\\n in a random interval of length \\n$L/N$\\n , where \\n$L=O\\\\!\\\\left(N^{1-\\\\epsilon}\\\\right)$\\n , and show that its variance (the number variance) is asymptotic to L with high probability w.r.t. \\n$\\\\alpha$\\n , which is in agreement with the statistics of uniform i.i.d. random points in the unit interval. In addition, we show that the same asymptotic holds almost surely in \\n$\\\\alpha\\\\in\\\\mathbb{R}$\\n when \\n$L=O\\\\!\\\\left(N^{1/2-\\\\epsilon}\\\\right)$\\n . For slowly growing L, we further prove a central limit theorem for \\n$S_{N}\\\\!\\\\left(L,\\\\alpha\\\\right)$\\n which holds for almost all \\n$\\\\alpha\\\\in\\\\mathbb{R}$\\n .\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"107 1\",\"pages\":\"303 - 318\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004123000142\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000142","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了数列$\left(\alpha a_{n}\right)_{n=1}^{\infty}$的小数部分的中尺度统计量,其中$\left(a_{n}\right)_{n=1}^{\infty}$是一个正的实值空白数列,$\alpha\in\mathbb{R}$。特别地,我们考虑长度为$L/N$,其中$L=O\!\left(N^{1-\epsilon}\right)$的随机区间中的元素个数$S_{N}\!\left(L,\alpha\right)$,并证明其方差(数量方差)以高概率w.r.t. $\alpha$渐近于L,这与单位区间内均匀i.i.d.随机点的统计量一致。此外,当$L=O\!\left(N^{1/2-\epsilon}\right)$时,我们证明了相同的渐近在$\alpha\in\mathbb{R}$几乎肯定成立。对于缓慢增长的L,我们进一步证明了$S_{N}\!\left(L,\alpha\right)$的中心极限定理,该定理几乎适用于所有$\alpha\in\mathbb{R}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intermediate-scale statistics for real-valued lacunary sequences
Abstract We study intermediate-scale statistics for the fractional parts of the sequence $\left(\alpha a_{n}\right)_{n=1}^{\infty}$ , where $\left(a_{n}\right)_{n=1}^{\infty}$ is a positive, real-valued lacunary sequence, and $\alpha\in\mathbb{R}$ . In particular, we consider the number of elements $S_{N}\!\left(L,\alpha\right)$ in a random interval of length $L/N$ , where $L=O\!\left(N^{1-\epsilon}\right)$ , and show that its variance (the number variance) is asymptotic to L with high probability w.r.t. $\alpha$ , which is in agreement with the statistics of uniform i.i.d. random points in the unit interval. In addition, we show that the same asymptotic holds almost surely in $\alpha\in\mathbb{R}$ when $L=O\!\left(N^{1/2-\epsilon}\right)$ . For slowly growing L, we further prove a central limit theorem for $S_{N}\!\left(L,\alpha\right)$ which holds for almost all $\alpha\in\mathbb{R}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信