时间尺度变化检测在异常平稳性实时监测中的应用

Didier Aubert , Frédéric Guichard , Samia Bouchafa
{"title":"时间尺度变化检测在异常平稳性实时监测中的应用","authors":"Didier Aubert ,&nbsp;Frédéric Guichard ,&nbsp;Samia Bouchafa","doi":"10.1016/j.rti.2003.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents two robust algorithms with respect to global contrast changes: one detects changes; and the other detects stationary people or objects in image sequences obtained via a fixed camera. The first one is based on a level set representation of images and exploits their suitable properties under image contrast variation. The second makes use of the first, at different time scales, to allow discriminating between the scene background, the moving parts and stationarities<span>. This latter algorithm is justified by and tested in real-life situations; the detection of abnormal stationarities in public transit settings, e.g. subway corridors, will be presented herein with assessments carried out on a large number of real-life situations.</span></p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"10 1","pages":"Pages 9-22"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2003.10.001","citationCount":"20","resultStr":"{\"title\":\"Time-scale change detection applied to real-time abnormal stationarity monitoring\",\"authors\":\"Didier Aubert ,&nbsp;Frédéric Guichard ,&nbsp;Samia Bouchafa\",\"doi\":\"10.1016/j.rti.2003.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents two robust algorithms with respect to global contrast changes: one detects changes; and the other detects stationary people or objects in image sequences obtained via a fixed camera. The first one is based on a level set representation of images and exploits their suitable properties under image contrast variation. The second makes use of the first, at different time scales, to allow discriminating between the scene background, the moving parts and stationarities<span>. This latter algorithm is justified by and tested in real-life situations; the detection of abnormal stationarities in public transit settings, e.g. subway corridors, will be presented herein with assessments carried out on a large number of real-life situations.</span></p></div>\",\"PeriodicalId\":101062,\"journal\":{\"name\":\"Real-Time Imaging\",\"volume\":\"10 1\",\"pages\":\"Pages 9-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rti.2003.10.001\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real-Time Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077201403000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201403000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了两种关于全局对比度变化的鲁棒算法:一种是检测变化;另一种检测通过固定摄像机获得的图像序列中静止的人或物体。第一种方法是基于图像的水平集表示,并利用它们在图像对比度变化下的合适属性。第二种方法在不同的时间尺度上利用第一种方法来区分场景背景、运动部分和静止部分。后一种算法在现实生活中得到了验证和测试;本文将介绍公共交通环境(例如地铁走廊)中异常平稳性的检测,并对大量现实情况进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-scale change detection applied to real-time abnormal stationarity monitoring

This paper presents two robust algorithms with respect to global contrast changes: one detects changes; and the other detects stationary people or objects in image sequences obtained via a fixed camera. The first one is based on a level set representation of images and exploits their suitable properties under image contrast variation. The second makes use of the first, at different time scales, to allow discriminating between the scene background, the moving parts and stationarities. This latter algorithm is justified by and tested in real-life situations; the detection of abnormal stationarities in public transit settings, e.g. subway corridors, will be presented herein with assessments carried out on a large number of real-life situations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信