通过静态分析进行入侵检测

D. Wagner, Drew Dean
{"title":"通过静态分析进行入侵检测","authors":"D. Wagner, Drew Dean","doi":"10.1109/SECPRI.2001.924296","DOIUrl":null,"url":null,"abstract":"One of the primary challenges in intrusion detection is modelling typical application behavior so that we can recognize attacks by their atypical effects without raising too many false alarms. We show how static analysis may be used to automatically derive a model of application behavior. The result is a host-based intrusion detection system with three advantages: a high degree of automation, protection against a broad class of attacks based on corrupted code, and the elimination of false alarms. We report on our experience with a prototype implementation of this technique.","PeriodicalId":20502,"journal":{"name":"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001","volume":"38 1","pages":"156-168"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"773","resultStr":"{\"title\":\"Intrusion detection via static analysis\",\"authors\":\"D. Wagner, Drew Dean\",\"doi\":\"10.1109/SECPRI.2001.924296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the primary challenges in intrusion detection is modelling typical application behavior so that we can recognize attacks by their atypical effects without raising too many false alarms. We show how static analysis may be used to automatically derive a model of application behavior. The result is a host-based intrusion detection system with three advantages: a high degree of automation, protection against a broad class of attacks based on corrupted code, and the elimination of false alarms. We report on our experience with a prototype implementation of this technique.\",\"PeriodicalId\":20502,\"journal\":{\"name\":\"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001\",\"volume\":\"38 1\",\"pages\":\"156-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"773\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECPRI.2001.924296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECPRI.2001.924296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 773

摘要

入侵检测的主要挑战之一是对典型的应用程序行为进行建模,以便我们能够根据其非典型效果识别攻击,而不会引起太多的假警报。我们将展示如何使用静态分析来自动派生应用程序行为模型。其结果是基于主机的入侵检测系统具有三个优点:高度自动化,防止基于损坏代码的各种攻击,消除假警报。我们将报告我们使用该技术的原型实现的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion detection via static analysis
One of the primary challenges in intrusion detection is modelling typical application behavior so that we can recognize attacks by their atypical effects without raising too many false alarms. We show how static analysis may be used to automatically derive a model of application behavior. The result is a host-based intrusion detection system with three advantages: a high degree of automation, protection against a broad class of attacks based on corrupted code, and the elimination of false alarms. We report on our experience with a prototype implementation of this technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信