{"title":"FiLiP:用于分层存储的基于文件生命周期的分析器","authors":"Adrian Khelili, S. Robert, S. Zertal","doi":"10.36244/icj.2022.4.4","DOIUrl":null,"url":null,"abstract":"The increasing gap between computing speed and storage latency leads to possible I/O bottlenecks on massively parallel computers. To mitigate this issue, hierarchical storage provides multi-tiered configurations where each tier has its own physical characteristics and associated performance. Selecting the most appropriate file placement policy on this multi-tiered storage is difficult and there is to our knowledge no tool that systematically provides statistics and metrics for optimal file policy selection. In this paper, we present FiLiP (File Lifecycle Profiler), a software which provides statistics and metrics for a better understanding of file access by applications and the consequences on file movements across hierarchical storage. After the description of FiLiP’s main features and architecture, we highlight the usefulness of our tool using three I/O intensive simulation HPC applications: NEMO, S3DIO and NAMD and a three-tiered burst buffer.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FiLiP: A File Lifecycle-based Profiler for hierarchical storage\",\"authors\":\"Adrian Khelili, S. Robert, S. Zertal\",\"doi\":\"10.36244/icj.2022.4.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing gap between computing speed and storage latency leads to possible I/O bottlenecks on massively parallel computers. To mitigate this issue, hierarchical storage provides multi-tiered configurations where each tier has its own physical characteristics and associated performance. Selecting the most appropriate file placement policy on this multi-tiered storage is difficult and there is to our knowledge no tool that systematically provides statistics and metrics for optimal file policy selection. In this paper, we present FiLiP (File Lifecycle Profiler), a software which provides statistics and metrics for a better understanding of file access by applications and the consequences on file movements across hierarchical storage. After the description of FiLiP’s main features and architecture, we highlight the usefulness of our tool using three I/O intensive simulation HPC applications: NEMO, S3DIO and NAMD and a three-tiered burst buffer.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36244/icj.2022.4.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2022.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FiLiP: A File Lifecycle-based Profiler for hierarchical storage
The increasing gap between computing speed and storage latency leads to possible I/O bottlenecks on massively parallel computers. To mitigate this issue, hierarchical storage provides multi-tiered configurations where each tier has its own physical characteristics and associated performance. Selecting the most appropriate file placement policy on this multi-tiered storage is difficult and there is to our knowledge no tool that systematically provides statistics and metrics for optimal file policy selection. In this paper, we present FiLiP (File Lifecycle Profiler), a software which provides statistics and metrics for a better understanding of file access by applications and the consequences on file movements across hierarchical storage. After the description of FiLiP’s main features and architecture, we highlight the usefulness of our tool using three I/O intensive simulation HPC applications: NEMO, S3DIO and NAMD and a three-tiered burst buffer.