{"title":"采用片上抽头电感的16nm FinFET功率和相位噪声可扩展DCO","authors":"E. Hager, S. Broussev, H. Pretl","doi":"10.1109/Austrochip.2019.00022","DOIUrl":null,"url":null,"abstract":"In this paper a Digitally-Controlled Oscillator (DCO) with configurable power consumption and phase-noise is presented. The DCO provides two different power/phase-noise modes while maintaining an almost constant figure-of-merit (FoM) by using a tapped inductor in the LC tank. For each mode (low-power and low-noise mode) a different DCO core is selected, which either connects to the outer taps of the tank inductor or to the inner ones. The presented design achieves a tuning range of 25.9 % with a center frequency of 4.88 GHz at a FoM of approximately 185 dBc/Hz. The DCO concept is simulated in a 16 nm FinFET CMOS process.","PeriodicalId":6724,"journal":{"name":"2019 Austrochip Workshop on Microelectronics (Austrochip)","volume":"111 1","pages":"59-64"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 16-nm FinFET Power- and Phase Noise-Scalable DCO using On-Chip Tapped Inductor\",\"authors\":\"E. Hager, S. Broussev, H. Pretl\",\"doi\":\"10.1109/Austrochip.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a Digitally-Controlled Oscillator (DCO) with configurable power consumption and phase-noise is presented. The DCO provides two different power/phase-noise modes while maintaining an almost constant figure-of-merit (FoM) by using a tapped inductor in the LC tank. For each mode (low-power and low-noise mode) a different DCO core is selected, which either connects to the outer taps of the tank inductor or to the inner ones. The presented design achieves a tuning range of 25.9 % with a center frequency of 4.88 GHz at a FoM of approximately 185 dBc/Hz. The DCO concept is simulated in a 16 nm FinFET CMOS process.\",\"PeriodicalId\":6724,\"journal\":{\"name\":\"2019 Austrochip Workshop on Microelectronics (Austrochip)\",\"volume\":\"111 1\",\"pages\":\"59-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Austrochip Workshop on Microelectronics (Austrochip)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Austrochip.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Austrochip Workshop on Microelectronics (Austrochip)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Austrochip.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 16-nm FinFET Power- and Phase Noise-Scalable DCO using On-Chip Tapped Inductor
In this paper a Digitally-Controlled Oscillator (DCO) with configurable power consumption and phase-noise is presented. The DCO provides two different power/phase-noise modes while maintaining an almost constant figure-of-merit (FoM) by using a tapped inductor in the LC tank. For each mode (low-power and low-noise mode) a different DCO core is selected, which either connects to the outer taps of the tank inductor or to the inner ones. The presented design achieves a tuning range of 25.9 % with a center frequency of 4.88 GHz at a FoM of approximately 185 dBc/Hz. The DCO concept is simulated in a 16 nm FinFET CMOS process.