硅光子网络多核系统的热管理

Tiansheng Zhang, José L. Abellán, A. Joshi, A. Coskun
{"title":"硅光子网络多核系统的热管理","authors":"Tiansheng Zhang, José L. Abellán, A. Joshi, A. Coskun","doi":"10.7873/DATE.2014.320","DOIUrl":null,"url":null,"abstract":"Silicon-photonic network-on-chips (NoCs) provide high bandwidth density; therefore, they are promising candidates to replace electrical NoCs in manycore systems. The silicon-photonic NoCs, however, are sensitive to the temperature gradients that typically occur on the chip, and hence, require proactive thermal management. This paper first provides a design space exploration of silicon-photonic networks in manycore systems and quantifies the performance impact of the temperature gradients for various network bandwidths. The paper then introduces a novel job allocation technique that minimizes the temperature gradients among the ring modulators/filters to improve the application performance. Experimental results for a single-chip 256-core system demonstrate that our policy is able to maintain the maximum network bandwidth. Compared to existing workload allocation policies, the proposed policy improves system performance by up to 26.1% when running a single application and 18.3% for multi-program scenarios.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Thermal management of manycore systems with silicon-photonic networks\",\"authors\":\"Tiansheng Zhang, José L. Abellán, A. Joshi, A. Coskun\",\"doi\":\"10.7873/DATE.2014.320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-photonic network-on-chips (NoCs) provide high bandwidth density; therefore, they are promising candidates to replace electrical NoCs in manycore systems. The silicon-photonic NoCs, however, are sensitive to the temperature gradients that typically occur on the chip, and hence, require proactive thermal management. This paper first provides a design space exploration of silicon-photonic networks in manycore systems and quantifies the performance impact of the temperature gradients for various network bandwidths. The paper then introduces a novel job allocation technique that minimizes the temperature gradients among the ring modulators/filters to improve the application performance. Experimental results for a single-chip 256-core system demonstrate that our policy is able to maintain the maximum network bandwidth. Compared to existing workload allocation policies, the proposed policy improves system performance by up to 26.1% when running a single application and 18.3% for multi-program scenarios.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

硅光子片上网络(noc)提供高带宽密度;因此,它们有望取代多核系统中的电气noc。然而,硅光子noc对通常发生在芯片上的温度梯度很敏感,因此需要主动热管理。本文首先对多核系统中硅光子网络的设计空间进行了探索,并量化了不同网络带宽下温度梯度对性能的影响。然后,本文介绍了一种新的工作分配技术,该技术可以最小化环形调制器/滤波器之间的温度梯度,以提高应用性能。在单片256核系统上的实验结果表明,该策略能够保持最大的网络带宽。与现有的工作负载分配策略相比,建议的策略在运行单个应用程序时可将系统性能提高26.1%,在运行多程序场景时可将系统性能提高18.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal management of manycore systems with silicon-photonic networks
Silicon-photonic network-on-chips (NoCs) provide high bandwidth density; therefore, they are promising candidates to replace electrical NoCs in manycore systems. The silicon-photonic NoCs, however, are sensitive to the temperature gradients that typically occur on the chip, and hence, require proactive thermal management. This paper first provides a design space exploration of silicon-photonic networks in manycore systems and quantifies the performance impact of the temperature gradients for various network bandwidths. The paper then introduces a novel job allocation technique that minimizes the temperature gradients among the ring modulators/filters to improve the application performance. Experimental results for a single-chip 256-core system demonstrate that our policy is able to maintain the maximum network bandwidth. Compared to existing workload allocation policies, the proposed policy improves system performance by up to 26.1% when running a single application and 18.3% for multi-program scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信