方形晶格上环闭合概率的极限

R. E. Trueman, S. Whittington
{"title":"方形晶格上环闭合概率的极限","authors":"R. E. Trueman, S. Whittington","doi":"10.1088/0305-4470/5/12/005","DOIUrl":null,"url":null,"abstract":"A Monte Carlo technique is described for estimating the number of tadpoles of a given size, which are weakly embeddable in a given lattice. Data are reported for the square lattice for tadpoles with up to twenty edges in the head and up to fifty edges in the tail. These data are combined with good self-avoiding walk extrapolants to yield estimates of the limiting probability (pk) of forming a head with k edges, and it is suggested that pk approximately k- alpha where alpha approximately=2.13.","PeriodicalId":54612,"journal":{"name":"Physics-A Journal of General and Applied Physics","volume":"147 1","pages":"1664-1668"},"PeriodicalIF":0.0000,"publicationDate":"1972-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Limiting ring closure probability on the square lattice\",\"authors\":\"R. E. Trueman, S. Whittington\",\"doi\":\"10.1088/0305-4470/5/12/005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Monte Carlo technique is described for estimating the number of tadpoles of a given size, which are weakly embeddable in a given lattice. Data are reported for the square lattice for tadpoles with up to twenty edges in the head and up to fifty edges in the tail. These data are combined with good self-avoiding walk extrapolants to yield estimates of the limiting probability (pk) of forming a head with k edges, and it is suggested that pk approximately k- alpha where alpha approximately=2.13.\",\"PeriodicalId\":54612,\"journal\":{\"name\":\"Physics-A Journal of General and Applied Physics\",\"volume\":\"147 1\",\"pages\":\"1664-1668\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics-A Journal of General and Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0305-4470/5/12/005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics-A Journal of General and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/5/12/005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

描述了一种用于估计给定大小的蝌蚪数量的蒙特卡罗技术,这些蝌蚪在给定的晶格中是弱嵌入的。在方形格子中,蝌蚪的头部最多有20条边,尾部最多有50条边。这些数据与良好的自我避免行走外推相结合,得出了形成具有k条边的头部的极限概率(pk),并建议pk近似于k- alpha,其中alpha近似=2.13。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limiting ring closure probability on the square lattice
A Monte Carlo technique is described for estimating the number of tadpoles of a given size, which are weakly embeddable in a given lattice. Data are reported for the square lattice for tadpoles with up to twenty edges in the head and up to fifty edges in the tail. These data are combined with good self-avoiding walk extrapolants to yield estimates of the limiting probability (pk) of forming a head with k edges, and it is suggested that pk approximately k- alpha where alpha approximately=2.13.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信