动态不完全决策系统的高效算法

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
N. Thang, Long Giang Nguyen, Hoang Viet Long, N. Tuan, T. Tuan, Ngo Duy Tan
{"title":"动态不完全决策系统的高效算法","authors":"N. Thang, Long Giang Nguyen, Hoang Viet Long, N. Tuan, T. Tuan, Ngo Duy Tan","doi":"10.4018/IJDWM.2021070103","DOIUrl":null,"url":null,"abstract":"Attribute reduction is a crucial problem in the process of data mining and knowledge discovery in big data. In incomplete decision systems, the model using tolerance rough set is fundamental to solve the problem by computing the redact to reduce the execution time. However, these proposals used the traditional filter approach so that the reduct was not optimal in the number of attributes and the accuracy of classification. The problem is critical in the dynamic incomplete decision systems which are more appropriate for real-world applications. Therefore, this paper proposes two novel incremental algorithms using the combination of filter and wrapper approach, namely IFWA_ADO and IFWA_DEO, respectively, for the dynamic incomplete decision systems. The IFWA_ADO computes reduct incrementally in cases of adding multiple objects while IFWA_DEO updates reduct when removing multiple objects. These algorithms are also verified on six data sets. Experimental results show that the filter-wrapper algorithms get higher performance than the other filter incremental algorithms.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient Algorithms for Dynamic Incomplete Decision Systems\",\"authors\":\"N. Thang, Long Giang Nguyen, Hoang Viet Long, N. Tuan, T. Tuan, Ngo Duy Tan\",\"doi\":\"10.4018/IJDWM.2021070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attribute reduction is a crucial problem in the process of data mining and knowledge discovery in big data. In incomplete decision systems, the model using tolerance rough set is fundamental to solve the problem by computing the redact to reduce the execution time. However, these proposals used the traditional filter approach so that the reduct was not optimal in the number of attributes and the accuracy of classification. The problem is critical in the dynamic incomplete decision systems which are more appropriate for real-world applications. Therefore, this paper proposes two novel incremental algorithms using the combination of filter and wrapper approach, namely IFWA_ADO and IFWA_DEO, respectively, for the dynamic incomplete decision systems. The IFWA_ADO computes reduct incrementally in cases of adding multiple objects while IFWA_DEO updates reduct when removing multiple objects. These algorithms are also verified on six data sets. Experimental results show that the filter-wrapper algorithms get higher performance than the other filter incremental algorithms.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDWM.2021070103\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJDWM.2021070103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

属性约简是大数据数据挖掘和知识发现过程中的一个关键问题。在不完全决策系统中,使用容差粗糙集的模型是通过计算编校来减少执行时间的基础。然而,这些建议使用传统的过滤方法,使得约简在属性数量和分类精度上不是最优的。这个问题在动态不完全决策系统中非常关键,因为动态不完全决策系统更适合实际应用。因此,针对动态不完全决策系统,本文提出了两种结合过滤和包装的增量算法IFWA_ADO和IFWA_DEO。在添加多个对象的情况下,IFWA_ADO计算的reduce是增量的,而IFWA_DEO计算的reduce是在删除多个对象时更新的。这些算法还在六个数据集上进行了验证。实验结果表明,该滤波包装算法比其他滤波增量算法具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Algorithms for Dynamic Incomplete Decision Systems
Attribute reduction is a crucial problem in the process of data mining and knowledge discovery in big data. In incomplete decision systems, the model using tolerance rough set is fundamental to solve the problem by computing the redact to reduce the execution time. However, these proposals used the traditional filter approach so that the reduct was not optimal in the number of attributes and the accuracy of classification. The problem is critical in the dynamic incomplete decision systems which are more appropriate for real-world applications. Therefore, this paper proposes two novel incremental algorithms using the combination of filter and wrapper approach, namely IFWA_ADO and IFWA_DEO, respectively, for the dynamic incomplete decision systems. The IFWA_ADO computes reduct incrementally in cases of adding multiple objects while IFWA_DEO updates reduct when removing multiple objects. These algorithms are also verified on six data sets. Experimental results show that the filter-wrapper algorithms get higher performance than the other filter incremental algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信