{"title":"基于LSTM的门诊文本分类系统","authors":"Che-Wen Chen, Shih-Pang Tseng, Jhing-Fa Wang","doi":"10.6688/JISE.202103_37(2).0006","DOIUrl":null,"url":null,"abstract":"Outpatient text classification is an important problem in medical natural language processing. Existing research has conventionally focused on rule-based or knowledge-source-based feature engineering, but only a few studies have utilized the effective feature learning capabilities of deep learning methods. A long short-term memory (LSTM) model for the outpatient text classification system was proposed in this research. The system has the ability to classify outpatient categories according to textual content on website Taiwan E Hospital. The experimental results showed that our system has very well in the task. The success of the LSTM model applications in the outpatient system provide users to inquire about their health status as references.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":"75 1","pages":"365-379"},"PeriodicalIF":0.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Outpatient Text Classification System Using LSTM\",\"authors\":\"Che-Wen Chen, Shih-Pang Tseng, Jhing-Fa Wang\",\"doi\":\"10.6688/JISE.202103_37(2).0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outpatient text classification is an important problem in medical natural language processing. Existing research has conventionally focused on rule-based or knowledge-source-based feature engineering, but only a few studies have utilized the effective feature learning capabilities of deep learning methods. A long short-term memory (LSTM) model for the outpatient text classification system was proposed in this research. The system has the ability to classify outpatient categories according to textual content on website Taiwan E Hospital. The experimental results showed that our system has very well in the task. The success of the LSTM model applications in the outpatient system provide users to inquire about their health status as references.\",\"PeriodicalId\":50177,\"journal\":{\"name\":\"Journal of Information Science and Engineering\",\"volume\":\"75 1\",\"pages\":\"365-379\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.6688/JISE.202103_37(2).0006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202103_37(2).0006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Outpatient text classification is an important problem in medical natural language processing. Existing research has conventionally focused on rule-based or knowledge-source-based feature engineering, but only a few studies have utilized the effective feature learning capabilities of deep learning methods. A long short-term memory (LSTM) model for the outpatient text classification system was proposed in this research. The system has the ability to classify outpatient categories according to textual content on website Taiwan E Hospital. The experimental results showed that our system has very well in the task. The success of the LSTM model applications in the outpatient system provide users to inquire about their health status as references.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.