{"title":"Ni/PZT层压复合材料的磁电效应","authors":"Hong Wan, Chao Xu, Xuezhong Wu","doi":"10.1109/NEMS.2006.334724","DOIUrl":null,"url":null,"abstract":"Giant magnetoelectric coupling effect between Ni and PZT was discovered by investigating the Ni/PZT laminate composites experimentally and numerically. The experimental results, which were well coincident with the data calculated by the finite element software ANSYS, showed that the magnetoelectric voltage coefficient alphaE could reach to 4800 mV/A for Ni/PZT bilayer cantilever at its resonant frequency and the average alphaE of Ni/PZT/Ni three-ply was about 1050 mV/A at its nonresonant frequency. That giant magnetoelectric coupling effect of Ni/PZT laminate composites attributed to the high magnetostrictive sensitivity of Ni at a low applied magnetic field and the high piezoelectric properties of PZT. With low cost and easy fabrication, this kind of composite was potential candidates for magnetoelectric memory devices, electrically controlled magnetic devices, magnetically controlled piezoelectric devices, and smart sensors","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"67 1","pages":"287-290"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoelectric Effect in Ni/PZT Laminate Composites\",\"authors\":\"Hong Wan, Chao Xu, Xuezhong Wu\",\"doi\":\"10.1109/NEMS.2006.334724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Giant magnetoelectric coupling effect between Ni and PZT was discovered by investigating the Ni/PZT laminate composites experimentally and numerically. The experimental results, which were well coincident with the data calculated by the finite element software ANSYS, showed that the magnetoelectric voltage coefficient alphaE could reach to 4800 mV/A for Ni/PZT bilayer cantilever at its resonant frequency and the average alphaE of Ni/PZT/Ni three-ply was about 1050 mV/A at its nonresonant frequency. That giant magnetoelectric coupling effect of Ni/PZT laminate composites attributed to the high magnetostrictive sensitivity of Ni at a low applied magnetic field and the high piezoelectric properties of PZT. With low cost and easy fabrication, this kind of composite was potential candidates for magnetoelectric memory devices, electrically controlled magnetic devices, magnetically controlled piezoelectric devices, and smart sensors\",\"PeriodicalId\":6362,\"journal\":{\"name\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"67 1\",\"pages\":\"287-290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2006.334724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetoelectric Effect in Ni/PZT Laminate Composites
Giant magnetoelectric coupling effect between Ni and PZT was discovered by investigating the Ni/PZT laminate composites experimentally and numerically. The experimental results, which were well coincident with the data calculated by the finite element software ANSYS, showed that the magnetoelectric voltage coefficient alphaE could reach to 4800 mV/A for Ni/PZT bilayer cantilever at its resonant frequency and the average alphaE of Ni/PZT/Ni three-ply was about 1050 mV/A at its nonresonant frequency. That giant magnetoelectric coupling effect of Ni/PZT laminate composites attributed to the high magnetostrictive sensitivity of Ni at a low applied magnetic field and the high piezoelectric properties of PZT. With low cost and easy fabrication, this kind of composite was potential candidates for magnetoelectric memory devices, electrically controlled magnetic devices, magnetically controlled piezoelectric devices, and smart sensors