绕过KLS:高斯冷却和O^*(n3)体积算法

Benjamin R. Cousins, S. Vempala
{"title":"绕过KLS:高斯冷却和O^*(n3)体积算法","authors":"Benjamin R. Cousins, S. Vempala","doi":"10.1145/2746539.2746563","DOIUrl":null,"url":null,"abstract":"We present an O*(n3) randomized algorithm for estimating the volume of a well-rounded convex body given by a membership oracle, improving on the previous best complexity of O*(n4). The new algorithmic ingredient is an accelerated cooling schedule where the rate of cooling increases with the temperature. Previously, the known approach for potentially achieving such complexity relied on a positive resolution of the KLS hyperplane conjecture, a central open problem in convex geometry.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Bypassing KLS: Gaussian Cooling and an O^*(n3) Volume Algorithm\",\"authors\":\"Benjamin R. Cousins, S. Vempala\",\"doi\":\"10.1145/2746539.2746563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an O*(n3) randomized algorithm for estimating the volume of a well-rounded convex body given by a membership oracle, improving on the previous best complexity of O*(n4). The new algorithmic ingredient is an accelerated cooling schedule where the rate of cooling increases with the temperature. Previously, the known approach for potentially achieving such complexity relied on a positive resolution of the KLS hyperplane conjecture, a central open problem in convex geometry.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

我们提出了一种O*(n3)随机算法,用于估计由隶属度表给出的圆角凸体的体积,改进了之前的最佳复杂度O*(n4)。新的算法成分是一个加速冷却计划,冷却速度随着温度的升高而增加。以前,已知的实现这种复杂性的方法依赖于KLS超平面猜想的正解,KLS超平面猜想是凸几何中的一个中心开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bypassing KLS: Gaussian Cooling and an O^*(n3) Volume Algorithm
We present an O*(n3) randomized algorithm for estimating the volume of a well-rounded convex body given by a membership oracle, improving on the previous best complexity of O*(n4). The new algorithmic ingredient is an accelerated cooling schedule where the rate of cooling increases with the temperature. Previously, the known approach for potentially achieving such complexity relied on a positive resolution of the KLS hyperplane conjecture, a central open problem in convex geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信