(2+1)-D GSWW方程的对称约简和精确非行波解

Guang-Can Xiao, Chuang Zheng, Daquan Xian
{"title":"(2+1)-D GSWW方程的对称约简和精确非行波解","authors":"Guang-Can Xiao, Chuang Zheng, Daquan Xian","doi":"10.1109/ICIST.2011.5765138","DOIUrl":null,"url":null,"abstract":"In this paper, the (2+1)-dimensional generalized shallow water wave equation (GSWW) is reduced to a (1+1)-dimensional PDE with constant coefficients by means of the group method. Moreover, we determine some new exact non-traveling solutions with arbitrary function of the GSWW equation by means of the homoclinic test technique, Hirota method and auxiliary equation method, etc.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"133 1","pages":"986-990"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry reduced and exact non-traveling wave solutions of the (2+1)-D GSWW equation\",\"authors\":\"Guang-Can Xiao, Chuang Zheng, Daquan Xian\",\"doi\":\"10.1109/ICIST.2011.5765138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the (2+1)-dimensional generalized shallow water wave equation (GSWW) is reduced to a (1+1)-dimensional PDE with constant coefficients by means of the group method. Moreover, we determine some new exact non-traveling solutions with arbitrary function of the GSWW equation by means of the homoclinic test technique, Hirota method and auxiliary equation method, etc.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"133 1\",\"pages\":\"986-990\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用群法将(2+1)维广义浅水波动方程(GSWW)化简为(1+1)维常系数偏微分方程。此外,我们还利用同斜检验技术、Hirota法和辅助方程法等确定了GSWW方程的任意函数的新的精确非行解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry reduced and exact non-traveling wave solutions of the (2+1)-D GSWW equation
In this paper, the (2+1)-dimensional generalized shallow water wave equation (GSWW) is reduced to a (1+1)-dimensional PDE with constant coefficients by means of the group method. Moreover, we determine some new exact non-traveling solutions with arbitrary function of the GSWW equation by means of the homoclinic test technique, Hirota method and auxiliary equation method, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信