组织对C-0.5 Mo焊接接头高温氢腐蚀损伤演化及动力学的影响

CC Pretorius, R. Mostert, T. Mukarati, VM Mathoho
{"title":"组织对C-0.5 Mo焊接接头高温氢腐蚀损伤演化及动力学的影响","authors":"CC Pretorius, R. Mostert, T. Mukarati, VM Mathoho","doi":"10.36303/satnt.2021cosaami.40","DOIUrl":null,"url":null,"abstract":"In the refining industry, steels can be susceptible to a damage mechanism known as high temperature hydrogen attack (HTHA). The detection of damage in such structures through non destructive testing (NDT) requires insight into the damage development in various parts of welded joints. Once damage is detected, the tracking of the damage progression and estimation of remaining life is problematic. The performance of C-0.5 Mo steels in such environments is also variable, and the current tendency is to regard the HTHA resistance of C-0.5 Mo as similar to that of carbon steels. The current investigation explores the possibility of using high-temperature capsule strain-gauges for the in-situ evaluation of swelling – which generally accompanies HTHA in susceptible steels – and, thereby, evaluate the development and kinetics of HTHA damage for a C-0.5 Mo steel welded joint. Specimens were prepared representing the base metal (BM), the HAZ region, both fine-grained and coarse-grained, and the weld-metal (WM). The specimens were exposed to hydrogen at 200 bar at a temperature of 500 °C in an autoclave, with certain specimens fitted with high-temperature strain gauges; i.e. instrumented test labelled as IWM, IHAZ and IBM. Metallographic evaluation of the specimens – regarding the three locations mentioned – were performed; with exposure times reflecting both incipient and advanced damage. In the case of the base metal and the fine grained HAZ, and after pronounced damage, macrocracks were observed. The orientation and location of these cracks were aligned with the rolling direction, and the cracks were evident in the through-thickness plane of the plate. It was found that the reason for this observation was due to preferential damage accumulation within banded regions, where high concentrations of carbides were observed. A sigmoidal equation was developed that described the swelling kinetics of the HAZ. The expression of swelling-induced strain rate (SISR) versus time showed a low initial SISR until incipient damage is formed, followed by accelerated attack. The peak SISR was observed midway through the damage evolution, where after the SISRs decreased as the presense of carbides – that feed the methane reaction – diminishes. It is proposed that the attachment of the encapsulated strain gauges to structures or components where HTHA damage is suspected, will assist in the tracking of damage and the estimation of remaining life; if used in conjunction with the developed sigmoidal equation.","PeriodicalId":22035,"journal":{"name":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural influences on the damage evolution and kinetics of high temperature hydrogen attack in a C-0.5 Mo welded joint\",\"authors\":\"CC Pretorius, R. Mostert, T. Mukarati, VM Mathoho\",\"doi\":\"10.36303/satnt.2021cosaami.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the refining industry, steels can be susceptible to a damage mechanism known as high temperature hydrogen attack (HTHA). The detection of damage in such structures through non destructive testing (NDT) requires insight into the damage development in various parts of welded joints. Once damage is detected, the tracking of the damage progression and estimation of remaining life is problematic. The performance of C-0.5 Mo steels in such environments is also variable, and the current tendency is to regard the HTHA resistance of C-0.5 Mo as similar to that of carbon steels. The current investigation explores the possibility of using high-temperature capsule strain-gauges for the in-situ evaluation of swelling – which generally accompanies HTHA in susceptible steels – and, thereby, evaluate the development and kinetics of HTHA damage for a C-0.5 Mo steel welded joint. Specimens were prepared representing the base metal (BM), the HAZ region, both fine-grained and coarse-grained, and the weld-metal (WM). The specimens were exposed to hydrogen at 200 bar at a temperature of 500 °C in an autoclave, with certain specimens fitted with high-temperature strain gauges; i.e. instrumented test labelled as IWM, IHAZ and IBM. Metallographic evaluation of the specimens – regarding the three locations mentioned – were performed; with exposure times reflecting both incipient and advanced damage. In the case of the base metal and the fine grained HAZ, and after pronounced damage, macrocracks were observed. The orientation and location of these cracks were aligned with the rolling direction, and the cracks were evident in the through-thickness plane of the plate. It was found that the reason for this observation was due to preferential damage accumulation within banded regions, where high concentrations of carbides were observed. A sigmoidal equation was developed that described the swelling kinetics of the HAZ. The expression of swelling-induced strain rate (SISR) versus time showed a low initial SISR until incipient damage is formed, followed by accelerated attack. The peak SISR was observed midway through the damage evolution, where after the SISRs decreased as the presense of carbides – that feed the methane reaction – diminishes. It is proposed that the attachment of the encapsulated strain gauges to structures or components where HTHA damage is suspected, will assist in the tracking of damage and the estimation of remaining life; if used in conjunction with the developed sigmoidal equation.\",\"PeriodicalId\":22035,\"journal\":{\"name\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36303/satnt.2021cosaami.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36303/satnt.2021cosaami.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在炼制工业中,钢容易受到称为高温氢侵蚀(HTHA)的损坏机制的影响。通过无损检测(NDT)来检测此类结构的损伤需要深入了解焊接接头各部分的损伤发展情况。一旦检测到损伤,对损伤进程的跟踪和剩余寿命的估计是有问题的。C-0.5 Mo钢在这种环境下的性能也是多变的,目前的趋势是认为C-0.5 Mo的抗高温高温性能与碳钢相似。目前的研究探索了使用高温胶囊应变片对膨胀进行现场评估的可能性——膨胀通常伴随着易感钢的高温高温变形——从而评估C-0.5 Mo钢焊接接头高温高温变形损伤的发展和动力学。制备了代表母材(BM)、热影响区(HAZ)细晶和粗晶以及焊接金属(WM)的试样。样品在500°C的高压灭菌器中暴露于200 bar的氢气中,某些样品配有高温应变片;即标记为IWM、IHAZ和IBM的仪器测试。对上述三个地点的标本进行了金相评价;暴露时间反映了早期和晚期的损伤。对于母材和细晶热影响区,在明显损伤后,观察到宏观裂纹。这些裂纹的方向和位置与轧制方向一致,裂纹在板材的透厚平面上较为明显。结果发现,造成这种现象的原因是由于带状区域内的优先损伤积累,在带状区域中观察到高浓度的碳化物。建立了描述热影响区膨胀动力学的s型方程。膨胀诱导应变率(SISR)随时间的变化表明,在早期损伤形成之前,初始SISR较低,随后加速攻击。峰值SISR是在损伤演化的中途观察到的,之后SISR随着碳化物(甲烷反应的原料)的减少而下降。建议将封装应变片附着在疑似HTHA损坏的结构或部件上,将有助于跟踪损坏和估计剩余寿命;如果与发展的s型方程结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural influences on the damage evolution and kinetics of high temperature hydrogen attack in a C-0.5 Mo welded joint
In the refining industry, steels can be susceptible to a damage mechanism known as high temperature hydrogen attack (HTHA). The detection of damage in such structures through non destructive testing (NDT) requires insight into the damage development in various parts of welded joints. Once damage is detected, the tracking of the damage progression and estimation of remaining life is problematic. The performance of C-0.5 Mo steels in such environments is also variable, and the current tendency is to regard the HTHA resistance of C-0.5 Mo as similar to that of carbon steels. The current investigation explores the possibility of using high-temperature capsule strain-gauges for the in-situ evaluation of swelling – which generally accompanies HTHA in susceptible steels – and, thereby, evaluate the development and kinetics of HTHA damage for a C-0.5 Mo steel welded joint. Specimens were prepared representing the base metal (BM), the HAZ region, both fine-grained and coarse-grained, and the weld-metal (WM). The specimens were exposed to hydrogen at 200 bar at a temperature of 500 °C in an autoclave, with certain specimens fitted with high-temperature strain gauges; i.e. instrumented test labelled as IWM, IHAZ and IBM. Metallographic evaluation of the specimens – regarding the three locations mentioned – were performed; with exposure times reflecting both incipient and advanced damage. In the case of the base metal and the fine grained HAZ, and after pronounced damage, macrocracks were observed. The orientation and location of these cracks were aligned with the rolling direction, and the cracks were evident in the through-thickness plane of the plate. It was found that the reason for this observation was due to preferential damage accumulation within banded regions, where high concentrations of carbides were observed. A sigmoidal equation was developed that described the swelling kinetics of the HAZ. The expression of swelling-induced strain rate (SISR) versus time showed a low initial SISR until incipient damage is formed, followed by accelerated attack. The peak SISR was observed midway through the damage evolution, where after the SISRs decreased as the presense of carbides – that feed the methane reaction – diminishes. It is proposed that the attachment of the encapsulated strain gauges to structures or components where HTHA damage is suspected, will assist in the tracking of damage and the estimation of remaining life; if used in conjunction with the developed sigmoidal equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信