{"title":"二维波纹管流场与传热数值分析及熵产最小化优化","authors":"O. N. Zonouz, M. Salmanpour","doi":"10.1155/2012/574596","DOIUrl":null,"url":null,"abstract":"This article provided a research for the trend of heat transfer and flow field through a 2-dimensional wavy duct. To construct a grid mesh, the physical domain was transferred to the computational domain and finite volume scheme was used for discretizing the governing equations. Through the simulation, the flow regime stayed in laminar mode. Constant temperature boundary condition has been used for solid walls. Air was used as a working fluid. Existence of waves makes some phenomenon like flow separation. Effect of Reynolds number, wave width, and wave number has been analyzed and velocity distribution, heat transfer coefficient, and tangential stress were computed for different cases. The final results were compared with the same straight duct. The entropy generation minimization method has been used for better comparison between final results.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"19 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Numerical Analysis of Flow Field and Heat Transfer of 2D Wavy Ducts and Optimization by Entropy Generation Minimization Method\",\"authors\":\"O. N. Zonouz, M. Salmanpour\",\"doi\":\"10.1155/2012/574596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provided a research for the trend of heat transfer and flow field through a 2-dimensional wavy duct. To construct a grid mesh, the physical domain was transferred to the computational domain and finite volume scheme was used for discretizing the governing equations. Through the simulation, the flow regime stayed in laminar mode. Constant temperature boundary condition has been used for solid walls. Air was used as a working fluid. Existence of waves makes some phenomenon like flow separation. Effect of Reynolds number, wave width, and wave number has been analyzed and velocity distribution, heat transfer coefficient, and tangential stress were computed for different cases. The final results were compared with the same straight duct. The entropy generation minimization method has been used for better comparison between final results.\",\"PeriodicalId\":17290,\"journal\":{\"name\":\"Journal of Thermodynamics\",\"volume\":\"19 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/574596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/574596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Analysis of Flow Field and Heat Transfer of 2D Wavy Ducts and Optimization by Entropy Generation Minimization Method
This article provided a research for the trend of heat transfer and flow field through a 2-dimensional wavy duct. To construct a grid mesh, the physical domain was transferred to the computational domain and finite volume scheme was used for discretizing the governing equations. Through the simulation, the flow regime stayed in laminar mode. Constant temperature boundary condition has been used for solid walls. Air was used as a working fluid. Existence of waves makes some phenomenon like flow separation. Effect of Reynolds number, wave width, and wave number has been analyzed and velocity distribution, heat transfer coefficient, and tangential stress were computed for different cases. The final results were compared with the same straight duct. The entropy generation minimization method has been used for better comparison between final results.