三角/四面体双调和方程的c0 -符合DG有限元法

IF 3.8 2区 数学 Q1 MATHEMATICS
X. Ye, Shangyou Zhang
{"title":"三角/四面体双调和方程的c0 -符合DG有限元法","authors":"X. Ye, Shangyou Zhang","doi":"10.1515/jnma-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract A C0-conforming discontinuous Galerkin (CDG) finite element method is introduced for solving the biharmonic equation. The first strong gradient of C0 finite element functions is a vector of discontinuous piecewise polynomials. The second gradient is the weak gradient of discontinuous piecewise polynomials. This method, by its name, uses nonconforming (non C1) approximations and keeps simple formulation of conforming finite element methods without any stabilizers. Optimal order error estimates in both a discrete H2-norm and the L2-norm are established for the corresponding finite element solutions. Numerical results are presented to confirm the theory of convergence.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A C0-conforming DG finite element method for biharmonic equations on triangle/tetrahedron\",\"authors\":\"X. Ye, Shangyou Zhang\",\"doi\":\"10.1515/jnma-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A C0-conforming discontinuous Galerkin (CDG) finite element method is introduced for solving the biharmonic equation. The first strong gradient of C0 finite element functions is a vector of discontinuous piecewise polynomials. The second gradient is the weak gradient of discontinuous piecewise polynomials. This method, by its name, uses nonconforming (non C1) approximations and keeps simple formulation of conforming finite element methods without any stabilizers. Optimal order error estimates in both a discrete H2-norm and the L2-norm are established for the corresponding finite element solutions. Numerical results are presented to confirm the theory of convergence.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0012\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要介绍了一种求解双调和方程的c0 -适不连续Galerkin (CDG)有限元方法。C0有限元函数的第一个强梯度是一个不连续的分段多项式向量。第二类梯度是不连续分段多项式的弱梯度。该方法顾名思义,采用非一致性(非C1)近似,保持一致性有限元方法的简单公式,不使用任何稳定器。对相应的有限元解分别建立了离散h2 -范数和l2 -范数下的最优阶误差估计。数值结果证实了收敛理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A C0-conforming DG finite element method for biharmonic equations on triangle/tetrahedron
Abstract A C0-conforming discontinuous Galerkin (CDG) finite element method is introduced for solving the biharmonic equation. The first strong gradient of C0 finite element functions is a vector of discontinuous piecewise polynomials. The second gradient is the weak gradient of discontinuous piecewise polynomials. This method, by its name, uses nonconforming (non C1) approximations and keeps simple formulation of conforming finite element methods without any stabilizers. Optimal order error estimates in both a discrete H2-norm and the L2-norm are established for the corresponding finite element solutions. Numerical results are presented to confirm the theory of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信