{"title":"用蒙特卡洛半导体半导体模拟电子散射过程中电子散射的极角","authors":"В. М. Борздов, А. В. Борздов, Ю.Г. Василевский","doi":"10.21883/ftp.2023.01.54925.4425","DOIUrl":null,"url":null,"abstract":"Procedures of polar scattering angle simulation for electron scattering on ionized impurities are examined for Brooks-Herring, Conwell-Weisskopf and Ridley models as the most frequently used in Monte Carlo simulation of charge carrier transport in semiconductors. A more correct procedure for polar scattering angle simulation is proposed for Ridley model. Peculiarities of scattering angle distribution densities calculated in the framework of regarded models are analyzed taking silicon as an example. Comparison of electron mobility calculated by ensemble Monte Carlo method using considered models has been done for doped silicon at 300 K and for constant electric field strength F = 7∙104 V/m","PeriodicalId":24054,"journal":{"name":"Физика и техника полупроводников","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Разыгрывание полярного угла рассеяния электронов на ионах примеси при моделировании процессов переноса заряда в полупроводниках методом Монте-Карло\",\"authors\":\"В. М. Борздов, А. В. Борздов, Ю.Г. Василевский\",\"doi\":\"10.21883/ftp.2023.01.54925.4425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Procedures of polar scattering angle simulation for electron scattering on ionized impurities are examined for Brooks-Herring, Conwell-Weisskopf and Ridley models as the most frequently used in Monte Carlo simulation of charge carrier transport in semiconductors. A more correct procedure for polar scattering angle simulation is proposed for Ridley model. Peculiarities of scattering angle distribution densities calculated in the framework of regarded models are analyzed taking silicon as an example. Comparison of electron mobility calculated by ensemble Monte Carlo method using considered models has been done for doped silicon at 300 K and for constant electric field strength F = 7∙104 V/m\",\"PeriodicalId\":24054,\"journal\":{\"name\":\"Физика и техника полупроводников\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Физика и техника полупроводников\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21883/ftp.2023.01.54925.4425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Физика и техника полупроводников","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/ftp.2023.01.54925.4425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Разыгрывание полярного угла рассеяния электронов на ионах примеси при моделировании процессов переноса заряда в полупроводниках методом Монте-Карло
Procedures of polar scattering angle simulation for electron scattering on ionized impurities are examined for Brooks-Herring, Conwell-Weisskopf and Ridley models as the most frequently used in Monte Carlo simulation of charge carrier transport in semiconductors. A more correct procedure for polar scattering angle simulation is proposed for Ridley model. Peculiarities of scattering angle distribution densities calculated in the framework of regarded models are analyzed taking silicon as an example. Comparison of electron mobility calculated by ensemble Monte Carlo method using considered models has been done for doped silicon at 300 K and for constant electric field strength F = 7∙104 V/m