{"title":"用神经网络学习非线性距离函数进行回归,并应用于稳健的人类年龄估计","authors":"N. Fan","doi":"10.1109/ICCV.2011.6126249","DOIUrl":null,"url":null,"abstract":"In this paper, a robust regression method is proposed for human age estimation, in which, outlier samples are corrected by their neighbors, through asymptotically increasing the correlation coefficients between the desired distances and the distances of sample labels. As another extension, we adopt a nonlinear distance function and approximate it by neural network. For fair comparison, we also experiment on the regression problem of age estimation from face images, and the results are very competitive among the state of the art.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Learning nonlinear distance functions using neural network for regression with application to robust human age estimation\",\"authors\":\"N. Fan\",\"doi\":\"10.1109/ICCV.2011.6126249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a robust regression method is proposed for human age estimation, in which, outlier samples are corrected by their neighbors, through asymptotically increasing the correlation coefficients between the desired distances and the distances of sample labels. As another extension, we adopt a nonlinear distance function and approximate it by neural network. For fair comparison, we also experiment on the regression problem of age estimation from face images, and the results are very competitive among the state of the art.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning nonlinear distance functions using neural network for regression with application to robust human age estimation
In this paper, a robust regression method is proposed for human age estimation, in which, outlier samples are corrected by their neighbors, through asymptotically increasing the correlation coefficients between the desired distances and the distances of sample labels. As another extension, we adopt a nonlinear distance function and approximate it by neural network. For fair comparison, we also experiment on the regression problem of age estimation from face images, and the results are very competitive among the state of the art.