Raymond F. Palmer, Tatjana Walker, Roger B. Perales, R. Rincon, C. Jaén, Claudia S. Miller
{"title":"与化学不耐受相关的疾病合并症","authors":"Raymond F. Palmer, Tatjana Walker, Roger B. Perales, R. Rincon, C. Jaén, Claudia S. Miller","doi":"10.4103/ed.ed_18_21","DOIUrl":null,"url":null,"abstract":"Background: Chemical intolerance (CI) is characterized by multisystem symptoms initiated by a one-time high-dose or a persistent low-dose exposure to environmental toxicants. Prior studies have investigated symptom clusters rather than defined comorbid disease clusters. We use a latent class modeling approach to determine the number and type of comorbid disease clusters associated with CI. Methods: Two hundred respondents with and without CI were recruited to complete the Quick Environmental Exposure and Sensitivity Inventory (QEESI), and a 17-item comorbid disease checklist. A logistic regression model was used to predict the odds of comorbid disease conditions between groups. A latent class analysis was used to inspect the pattern of dichotomous item responses from the 17 comorbid diseases. Results: Those with the highest QEESI scores had significantly greater probability of each comorbid disease compared to the lowest scoring individuals (P < 0.0001). Three latent class disease clusters were found. Class 1 (17% of the sample) was characterized by a cluster consisting of irritable bowel syndrome (IBS), arthritis, depression, anxiety, fibromyalgia, and chronic fatigue. The second class (53% of the sample) was characterized by a low probability of any of the co-morbid diseases. The third class (30% of the sample) was characterized only by allergy. Discussion: We have demonstrated that several salient comorbid diseases form a unique statistical cluster among a subset of individuals with CI. Understanding these disease clusters may help physicians and other health care workers to gain a better understanding of individuals with CI. As such, assessing their patients for CI may help identify the salient initiators and triggers of their CI symptoms—therefore guide potential treatment efforts.","PeriodicalId":11702,"journal":{"name":"Environmental Disease","volume":"184 1","pages":"134 - 141"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Disease comorbidities associated with chemical intolerance\",\"authors\":\"Raymond F. Palmer, Tatjana Walker, Roger B. Perales, R. Rincon, C. Jaén, Claudia S. Miller\",\"doi\":\"10.4103/ed.ed_18_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Chemical intolerance (CI) is characterized by multisystem symptoms initiated by a one-time high-dose or a persistent low-dose exposure to environmental toxicants. Prior studies have investigated symptom clusters rather than defined comorbid disease clusters. We use a latent class modeling approach to determine the number and type of comorbid disease clusters associated with CI. Methods: Two hundred respondents with and without CI were recruited to complete the Quick Environmental Exposure and Sensitivity Inventory (QEESI), and a 17-item comorbid disease checklist. A logistic regression model was used to predict the odds of comorbid disease conditions between groups. A latent class analysis was used to inspect the pattern of dichotomous item responses from the 17 comorbid diseases. Results: Those with the highest QEESI scores had significantly greater probability of each comorbid disease compared to the lowest scoring individuals (P < 0.0001). Three latent class disease clusters were found. Class 1 (17% of the sample) was characterized by a cluster consisting of irritable bowel syndrome (IBS), arthritis, depression, anxiety, fibromyalgia, and chronic fatigue. The second class (53% of the sample) was characterized by a low probability of any of the co-morbid diseases. The third class (30% of the sample) was characterized only by allergy. Discussion: We have demonstrated that several salient comorbid diseases form a unique statistical cluster among a subset of individuals with CI. Understanding these disease clusters may help physicians and other health care workers to gain a better understanding of individuals with CI. As such, assessing their patients for CI may help identify the salient initiators and triggers of their CI symptoms—therefore guide potential treatment efforts.\",\"PeriodicalId\":11702,\"journal\":{\"name\":\"Environmental Disease\",\"volume\":\"184 1\",\"pages\":\"134 - 141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/ed.ed_18_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ed.ed_18_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disease comorbidities associated with chemical intolerance
Background: Chemical intolerance (CI) is characterized by multisystem symptoms initiated by a one-time high-dose or a persistent low-dose exposure to environmental toxicants. Prior studies have investigated symptom clusters rather than defined comorbid disease clusters. We use a latent class modeling approach to determine the number and type of comorbid disease clusters associated with CI. Methods: Two hundred respondents with and without CI were recruited to complete the Quick Environmental Exposure and Sensitivity Inventory (QEESI), and a 17-item comorbid disease checklist. A logistic regression model was used to predict the odds of comorbid disease conditions between groups. A latent class analysis was used to inspect the pattern of dichotomous item responses from the 17 comorbid diseases. Results: Those with the highest QEESI scores had significantly greater probability of each comorbid disease compared to the lowest scoring individuals (P < 0.0001). Three latent class disease clusters were found. Class 1 (17% of the sample) was characterized by a cluster consisting of irritable bowel syndrome (IBS), arthritis, depression, anxiety, fibromyalgia, and chronic fatigue. The second class (53% of the sample) was characterized by a low probability of any of the co-morbid diseases. The third class (30% of the sample) was characterized only by allergy. Discussion: We have demonstrated that several salient comorbid diseases form a unique statistical cluster among a subset of individuals with CI. Understanding these disease clusters may help physicians and other health care workers to gain a better understanding of individuals with CI. As such, assessing their patients for CI may help identify the salient initiators and triggers of their CI symptoms—therefore guide potential treatment efforts.