正规锥算子的连续性和极大拟单调性

M. Bianchi, N. Hadjisavvas, R. Pini
{"title":"正规锥算子的连续性和极大拟单调性","authors":"M. Bianchi, N. Hadjisavvas, R. Pini","doi":"10.24193/subbmath.2022.1.03","DOIUrl":null,"url":null,"abstract":"In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuity and maximal quasimonotonicity of normal cone operators\",\"authors\":\"M. Bianchi, N. Hadjisavvas, R. Pini\",\"doi\":\"10.24193/subbmath.2022.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\\\\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了拟凸函数的校正正规锥算子的一些性质。特别地,我们引入了集值映射的极大拟运动性的新概念,不同于文献中出现的类似概念,并证明了该算子具有极大拟运动性。此外,我们证明了在$f$域上,当全局极小值集具有非空内时,正规锥算子的$s\乘以w^*$锥上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuity and maximal quasimonotonicity of normal cone operators
In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信