{"title":"正规锥算子的连续性和极大拟单调性","authors":"M. Bianchi, N. Hadjisavvas, R. Pini","doi":"10.24193/subbmath.2022.1.03","DOIUrl":null,"url":null,"abstract":"In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuity and maximal quasimonotonicity of normal cone operators\",\"authors\":\"M. Bianchi, N. Hadjisavvas, R. Pini\",\"doi\":\"10.24193/subbmath.2022.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\\\\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuity and maximal quasimonotonicity of normal cone operators
In this paper we study some properties of the adjusted normal cone operator of quasiconvex functions. In particular, we introduce a new notion of maximal quasimotonicity for set-valued maps different from similar ones recently appeared in the literature, and we show that it is enjoyed by this operator. Moreover, we prove the $s\times w^*$ cone upper semicontinuity of the normal cone operator in the domain of $f$ in case the set of global minima has non empty interior.