轻量级RAT-SQL:一种更多抽象和更少嵌入已有关系的RAT-SQL

Nathan Manzambi Ndongala
{"title":"轻量级RAT-SQL:一种更多抽象和更少嵌入已有关系的RAT-SQL","authors":"Nathan Manzambi Ndongala","doi":"10.21522/tijar.2014.10.02.art001","DOIUrl":null,"url":null,"abstract":"RAT-SQL is among the popular framework used in the Text-To-SQL challenges for jointly encoding the database relations and questions in a way to improve the semantic parser. In this work, we propose a light version of the RAT-SQL where we dramatically reduced the number of the preexisting relations from 55 to 7 (Light RAT-SQL-7) while preserving the same parsing accuracy. To ensure the effectiveness of our approach, we trained a Light RAT-SQL-2, (with 2 embeddings) to show that there is a statistically significant difference between RAT-SQL and Light RAT-SQL-2 while Light RAT-SQL-7 can compete with RAT-SQL. Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware Transformer, RAT-SQL, Text-To-SQL, Transformer.","PeriodicalId":22213,"journal":{"name":"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light RAT-SQL: A RAT-SQL with More Abstraction and Less Embedding of Pre-existing Relations\",\"authors\":\"Nathan Manzambi Ndongala\",\"doi\":\"10.21522/tijar.2014.10.02.art001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RAT-SQL is among the popular framework used in the Text-To-SQL challenges for jointly encoding the database relations and questions in a way to improve the semantic parser. In this work, we propose a light version of the RAT-SQL where we dramatically reduced the number of the preexisting relations from 55 to 7 (Light RAT-SQL-7) while preserving the same parsing accuracy. To ensure the effectiveness of our approach, we trained a Light RAT-SQL-2, (with 2 embeddings) to show that there is a statistically significant difference between RAT-SQL and Light RAT-SQL-2 while Light RAT-SQL-7 can compete with RAT-SQL. Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware Transformer, RAT-SQL, Text-To-SQL, Transformer.\",\"PeriodicalId\":22213,\"journal\":{\"name\":\"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21522/tijar.2014.10.02.art001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21522/tijar.2014.10.02.art001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

RAT-SQL是文本到sql挑战中使用的流行框架之一,用于以改进语义解析器的方式对数据库关系和问题进行联合编码。在这项工作中,我们提出了一个轻量级的RAT-SQL版本,在保持相同解析精度的同时,我们将先前存在的关系的数量从55个大幅减少到7个(轻量级RAT-SQL-7)。为了确保我们的方法的有效性,我们训练了一个Light RAT-SQL-2(有2个嵌入),以表明在RAT-SQL和Light RAT-SQL-2之间存在统计学上的显著差异,而Light RAT-SQL-7可以与RAT-SQL竞争。关键词:深度学习,自然语言处理,神经语义解析,关系感知转换,RAT-SQL,文本到sql,转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light RAT-SQL: A RAT-SQL with More Abstraction and Less Embedding of Pre-existing Relations
RAT-SQL is among the popular framework used in the Text-To-SQL challenges for jointly encoding the database relations and questions in a way to improve the semantic parser. In this work, we propose a light version of the RAT-SQL where we dramatically reduced the number of the preexisting relations from 55 to 7 (Light RAT-SQL-7) while preserving the same parsing accuracy. To ensure the effectiveness of our approach, we trained a Light RAT-SQL-2, (with 2 embeddings) to show that there is a statistically significant difference between RAT-SQL and Light RAT-SQL-2 while Light RAT-SQL-7 can compete with RAT-SQL. Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware Transformer, RAT-SQL, Text-To-SQL, Transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信