脂肪酶与脂质模型系统的相互作用

S. Zaitsev, I. S. Zaitsev, I. Milaeva
{"title":"脂肪酶与脂质模型系统的相互作用","authors":"S. Zaitsev, I. S. Zaitsev, I. Milaeva","doi":"10.6000/1929-5995.2020.09.08","DOIUrl":null,"url":null,"abstract":"The aim of this work was to study the interaction of lipases (as an important biopolymer) with models of biomembranes based on the phospholipid and cholesterol. Lipases (triacylglycerolacyl hydrolases) are widely distributed enzymes and well-known by their hydrolytic activity. The study of the lipase interactions with lipid vesicles in aqueous dispersions is of fundamental and practical interest. The pure phosphatidylcholine from egg yolk (ePC) and cholesterol (Chol) were obtained from Sigma-Aldrich. Lipase was obtained from hog pancreas. Measurements of the current and equilibrium surface tension (ST and eST) values were carried out using a BPA-1P device and ADSA program. The particle sizes in the prepared colloidal solutions were determined by the method of dynamic light scattering. An addition of lipase led to some decrease both, of ST and eST for the samples of ePC:Chol (in the ratios from19:1 to 1:1). The mean particle diameter (MPD) and effective particle diameter (EPD) values for the samples of ePC:Chol changed drastically by lipase addition. The EPD/MPD ratios increased from 1.7 to 2.0, from 1.8 to 2.6, from 2.3 to 6.5, from 1.5 to 2.9 for the samples of ePC:Chol at the ratios of 19:1, 14:1, 9:1, 7:1, respectively by lipase concentration increase. This general tendency can be explained by strong interaction of lipase with lipid membrane that leads to the formation of the mixed particles ePC:Chol:lipase with more narrow particle size distribution as compared to the initial EPD/MPD ratio (for the ePC:Chol mixture without lipase).","PeriodicalId":16998,"journal":{"name":"Journal of Research Updates in Polymer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of Lipase with Lipid Model Systems\",\"authors\":\"S. Zaitsev, I. S. Zaitsev, I. Milaeva\",\"doi\":\"10.6000/1929-5995.2020.09.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to study the interaction of lipases (as an important biopolymer) with models of biomembranes based on the phospholipid and cholesterol. Lipases (triacylglycerolacyl hydrolases) are widely distributed enzymes and well-known by their hydrolytic activity. The study of the lipase interactions with lipid vesicles in aqueous dispersions is of fundamental and practical interest. The pure phosphatidylcholine from egg yolk (ePC) and cholesterol (Chol) were obtained from Sigma-Aldrich. Lipase was obtained from hog pancreas. Measurements of the current and equilibrium surface tension (ST and eST) values were carried out using a BPA-1P device and ADSA program. The particle sizes in the prepared colloidal solutions were determined by the method of dynamic light scattering. An addition of lipase led to some decrease both, of ST and eST for the samples of ePC:Chol (in the ratios from19:1 to 1:1). The mean particle diameter (MPD) and effective particle diameter (EPD) values for the samples of ePC:Chol changed drastically by lipase addition. The EPD/MPD ratios increased from 1.7 to 2.0, from 1.8 to 2.6, from 2.3 to 6.5, from 1.5 to 2.9 for the samples of ePC:Chol at the ratios of 19:1, 14:1, 9:1, 7:1, respectively by lipase concentration increase. This general tendency can be explained by strong interaction of lipase with lipid membrane that leads to the formation of the mixed particles ePC:Chol:lipase with more narrow particle size distribution as compared to the initial EPD/MPD ratio (for the ePC:Chol mixture without lipase).\",\"PeriodicalId\":16998,\"journal\":{\"name\":\"Journal of Research Updates in Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research Updates in Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-5995.2020.09.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research Updates in Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-5995.2020.09.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是研究脂肪酶(一种重要的生物聚合物)与基于磷脂和胆固醇的生物膜模型的相互作用。脂肪酶(三酰基甘油酰水解酶)是一种广泛分布的酶,以其水解活性而闻名。脂肪酶与水分散体中脂质囊泡相互作用的研究具有基础性和实践性的意义。用Sigma-Aldrich法从蛋黄中分离得到纯磷脂酰胆碱(ePC)和胆固醇(Chol)。脂肪酶是从猪胰腺中提取的。使用BPA-1P装置和ADSA程序测量电流和平衡表面张力(ST和eST)值。用动态光散射法测定了所制备胶体溶液的粒径。添加脂肪酶导致ePC:Chol样品的ST和eST(比例为19:1 ~ 1:1)均有所降低。添加脂肪酶后,ePC:Chol样品的平均粒径(MPD)和有效粒径(EPD)值发生了较大的变化。随着脂肪酶浓度的增加,EPD/MPD比值在19:1、14:1、9:1、7:1时分别由1.7增加到2.0、1.8增加到2.6、2.3增加到6.5、1.5增加到2.9。这种总体趋势可以通过脂肪酶与脂质膜的强烈相互作用来解释,这种相互作用导致混合颗粒ePC:Chol:脂肪酶的形成,与初始EPD/MPD比(对于没有脂肪酶的ePC:Chol混合物)相比,其粒径分布更窄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction of Lipase with Lipid Model Systems
The aim of this work was to study the interaction of lipases (as an important biopolymer) with models of biomembranes based on the phospholipid and cholesterol. Lipases (triacylglycerolacyl hydrolases) are widely distributed enzymes and well-known by their hydrolytic activity. The study of the lipase interactions with lipid vesicles in aqueous dispersions is of fundamental and practical interest. The pure phosphatidylcholine from egg yolk (ePC) and cholesterol (Chol) were obtained from Sigma-Aldrich. Lipase was obtained from hog pancreas. Measurements of the current and equilibrium surface tension (ST and eST) values were carried out using a BPA-1P device and ADSA program. The particle sizes in the prepared colloidal solutions were determined by the method of dynamic light scattering. An addition of lipase led to some decrease both, of ST and eST for the samples of ePC:Chol (in the ratios from19:1 to 1:1). The mean particle diameter (MPD) and effective particle diameter (EPD) values for the samples of ePC:Chol changed drastically by lipase addition. The EPD/MPD ratios increased from 1.7 to 2.0, from 1.8 to 2.6, from 2.3 to 6.5, from 1.5 to 2.9 for the samples of ePC:Chol at the ratios of 19:1, 14:1, 9:1, 7:1, respectively by lipase concentration increase. This general tendency can be explained by strong interaction of lipase with lipid membrane that leads to the formation of the mixed particles ePC:Chol:lipase with more narrow particle size distribution as compared to the initial EPD/MPD ratio (for the ePC:Chol mixture without lipase).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信